

THE FLARECAST PROJECT AND WHAT LIES BEYOND

Manolis K. Georgoulis & the FLARECAST Team

AA (GR), TCD (IE), UNIGE (IT), CNR (IT), CNRS (FR), UPSud (FR), FHNW (CH), Met Office (UK)

FLARECAST (EC/H2020 grant No. 640216): flarecast.eu

Vienna, Austria, April 17 - 22, 2016

OUTLINE

- *** The approach:** FLARECAST
 - Science
 - Architecture
 - Expected results •
- **The fusion:** FLARECAST & other FP7 & H2020 SWx projects
- Conclusion

FLARE CAST

* The problem: predicting space weather (in general) & solar flares (in particular)

Manolis K. Georgoulis

SOLAR FLARES: THE SINGLE ...

www.helioviewer.org

(hv)

EGI **GENERAL ASSEMBLY 2016**

2011-08-09 06:34:33

Manolis K. Georgoulis

practically the entire range of the electromagnetic spectrum, from y-ray to radio wavelengths

	X	\rightarrow
		_
	k.t	->
	IVI	>
		_
		_
		_
	\sim	~
		->
		_
		_
		_
		_
	в	+>
	_	
	- 09	15.60

SOLAR FLARES: THE SINGLE ...

www.helioviewer.org

(hv)

EGI **GENERAL ASSEMBLY 2016**

2011-08-09 06:34:33

Manolis K. Georgoulis

practically the entire range of the electromagnetic spectrum, from y-ray to radio wavelengths

	X	\rightarrow
		_
	k.t	->
	IVI	>
		_
		_
		_
	\sim	~
		->
		_
		_
		_
		_
	D	
	в	+>
	_	
	- 09	15.60

SOLAR FLARES: ... AND THE PLENTY

No. of flares per class over typical solar cycle

> C1.0

> M1.0

> X1.0

> X5.0

Manolis K. Georgoulis

FLARE CAST

MAJOR FLARE REPERCUSSIONS: EVERYTHING UNDER THE SUNFLARE CAST

Manolis K. Georgoulis

THE CHALLENGE

GENERAL ASSEMBLY 2016

Manolis K. Georgoulis

5811 5818 5820 5823 5831 (5844

Objective: predict solar flares from near realtime (NRT) observations of solar evolution

- Prediction typically incolves solar • photospheric (LOS or vector) magnetic field measurements. SDO/HMI is the most prominent source of these data
- Predictive parameters are inferred locally ightarrow
- **Observational cadence:**
 - 45 s, for full-disk LOS data
 - 720 s, for full-disk vector data

THE CHALLENGE

GENERAL ASSEMBLY 2016

Manolis K. Georgoulis

5811 5818 5820 5823 5831 (5844

Objective: predict solar flares from near realtime (NRT) observations of solar evolution

- Prediction typically incolves solar • photospheric (LOS or vector) magnetic field measurements. SDO/HMI is the most prominent source of these data
- Predictive parameters are inferred locally ightarrow
- **Observational cadence:**
 - 45 s, for full-disk LOS data
 - 720 s, for full-disk vector data

THE APPROACH: FLARECAST / H2020 PROTEC-2014 PROJECT

"Diverse expertise and ways of thinking ... this is what FLARECAST is all about" (FLARECAST 1st year press release)

Science

- solar physics
- artificial intelligence \bullet
- validation
- exploration

Infrastructure hardware

software buildup

Communication governments / end users public

Manolis K. Georgoulis

THE APPROACH: FLARECAST / H2020 PROTEC-2014 PROJECT

"Diverse expertise and ways of thinking ... this is what FLARECAST is all about" (FLARECAST 1st year press release)

Science

- solar physics
- artificial intelligence
- validation
- exploration

Credit: celestial dreams

software buildup

/usr/local/lib/python2.7/site-packages/sunpy/visualization/w UserWarning: SunPy plotting is improved by installing the WCSAxes m 2015-10-02T02:36:00.220019077Z warnings.warn("SunPy plotting is improved 2015-10-02T02:36:00.463577874Z S.M.A.R.T. info: libdc1394 errors are okay, they can be ignore

Manolis K. Georgoulis

Communication governments / end users public

FLARECAST SCIENCE: SOLAR FLARE PREDICTORS

Keyword	Description	Formula	F-Score
TOTUSJH	Total unsigned current helicity	$H_{c_{ m total}} \propto \sum B_z \cdot J_z $	3560
TOTBSQ	Total magnitude of Lorentz force	$F\propto \sum B^2$	3051
TOTPOT	Total photospheric magnetic free energy density	$ ho_{ m tot} \propto \sum \left(oldsymbol{B}^{ m Obs} - oldsymbol{B}^{ m Pot} ight)^2 dA$	2996
TOTUSJZ	Total unsigned vertical current	$J_{z_{\text{total}}} = \sum J_z dA$	2733
ABSNJZH	Absolute value of the net current helicity	$H_{c_{ m abs}} \propto \left \sum B_z \cdot J_z ight $	2618
SAVNCPP	Sum of the modulus of the net current per polarity	$J_{z_{sum}} \propto \left \sum_{z}^{B_z^+} J_z dA \right + \left \sum_{z}^{B_z^-} J_z dA \right $	2448
USFLUX	Total unsigned flux	$\Phi = \sum B_z dA$	2437
AREA_ACR	Area of strong field pixels in the active region	Area = \sum Pixels	2047
TOTFZ	Sum of z-component of Lorentz force	$F_z \propto \sum (B_x^2 + B_y^2 - B_z^2) dA$	1371
MEANPOT	Mean photospheric magnetic free energy	$\overline{ ho} \propto rac{1}{N} \sum \left(oldsymbol{B}^{ ext{Obs}} - oldsymbol{B}^{ ext{Pot}} ight)^2$	1064
R_VALUE	Sum of flux near polarity inversion line	$\Phi = \sum B_{LoS} dA$ within R mask	1057
EPSZ	Sum of z-component of normalized Lorentz force	$\delta F_z \propto \frac{\sum (B_x^2 + B_y^2 - B_z^2)}{\sum B^2}$	864.1
shrgt45	Fraction of Area with shear $> 45^{\circ}$	Area with shear $> 45^{\circ}$ / total area	740.8
MEANSHR	Mean shear angle	$\overline{\Gamma} = \frac{1}{N} \sum \arccos\left(\frac{B^{\text{Obs}} \cdot B^{\text{Pot}}}{ B^{\text{Obs}} B^{\text{Pot}} }\right)$	727.9
MEANGAM	Mean angle of field from radial	$\overline{\gamma} = \frac{1}{N} \sum \arctan\left(\frac{B_h}{B_z}\right)$	573.3
MEANGBT	Mean gradient of total field	$\overline{ \nabla B_{\text{tot}} } = \frac{1}{N} \sum \sqrt{\left(\frac{\partial B}{\partial x}\right)^2 + \left(\frac{\partial B}{\partial y}\right)^2}$	192.3
MEANGBZ	Mean gradient of vertical field	$\overline{ \nabla B_z } = \frac{1}{N} \sum \sqrt{\left(\frac{\partial B_z}{\partial x}\right)^2 + \left(\frac{\partial B_z}{\partial y}\right)^2}$	88.40
MEANGBH	Mean gradient of horizontal field	$\overline{ \nabla B_h } = \frac{1}{N} \sum \sqrt{\left(\frac{\partial B_h}{\partial x}\right)^2 + \left(\frac{\partial B_h}{\partial y}\right)^2}$	79.40
MEANJZH	Mean current helicity (B_z contribution)	$\overline{H_c} \propto rac{1}{N} \sum B_z \cdot J_z$	46.73
TOTFY	Sum of y-component of Lorentz force	$F_y \propto \sum B_y B_z dA$	28.92
MEANJZD	Mean vertical current density	$\overline{J_z} \propto rac{1}{N} \sum \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y} ight)$	17.44
MEANALP	Mean characteristic twist parameter, α	$\alpha_{\text{total}} \propto \frac{\sum J_z \cdot B_z}{\sum B_z^2}$	10.41
TOTFX	Sum of x-component of Lorentz force	$F_x \propto -\sum B_x B_z dA$	6.147
EPSY	Sum of y-component of normalized Lorentz force	$\delta F_y \propto \frac{-\sum B_y B_z}{\sum B^2}$	0.647
EPSX	Sum of x-component of normalized Lorentz force	$\delta F_x \propto rac{\sum B_x B_z}{\sum B^2}$	0.366

Utilize pretty much everything proposed in peer-reviewed literature EG **GENERAL ASSEMBLY 2016** Manolis K. Georgoulis

FLARE CAST

100

FLARECAST SCIENCE: PREDICTION ALGORITHMS

Skill comparison between different machinelearning techniques applied to SDO/HMI data

GENERAL ASSEMBLY 2016

EĜ

FLARE CAST

Example of multi-layer-perceptron reproduction of a given time series

Manolis K. Georgoulis

FLARECAST SCIENCE: VALIDATION ON COMMON GROUNDS

Metric Name	Short Name	Format	Worst Score	"No Sco
Accuracy	ACC	(TP + TN) / N	0	
Probability of detection	POD	TP / (TP + FN)	0	
Probability of false detection (false alarm rate)	POFD	FP / (FP + TN)	1	
False alarm ratio	FAR	FP/(TP+FP)	1	
True skill statistic	TSS	POD - POFD	-1	0
Heidke skill score	HSS	(TP + TN - E _{random})/(N - E _{random})	-1	0

Binary validation on categorical data

Manolis K. Georgoulis

Source: WMO Forecast Verification

FLARECAST SCIENCE: EXPLORATIVE RESEARCH

Aulanier et al., A&A, 2013

Manolis K. Georgoulis

- Understand solar magnetic eruptions (flare-CME
 - connection)
- Improve future flare prediction
- Investigate suitability of the flare forecasting window
- Advance CME prediction

Earth to scale

FLARECAST ARCHITECTURE

Vienna, April 18, 2016

Manolis K. Georgoulis

Manolis K. Georgoulis

FUSION: FLARECAST & OTHER EC PROJECTS

FLARE CAST

Manolis K. Georgoulis

FUSION: FLARECAST & OTHER EC PROJECTS FP7 SWx Projects Data exploitation

Ionospheric effects

AFFECTS - ionosphere, impact on communications **POPDAT** – database of ionospheric waves catalogues

Effects on ground systems

EURISGIC – geomagnetically induced currents in power systems

P. Chiarini, SWSC, 2013

EG

GENERAL ASSEMBLY 2016

Atmospheric effects

ATMOP - thermosphere, better tracking of space objects in LEO

Global modelling

SWIFF - couplings at solar surface, in space and at Earth SOTERIA - better databases of existing data & simulation models

analysis

exploration

modelling

SPACECAST - radiation belt, solar energetic particles, protection of space assets SEPServer – SEP data and events **PLASMON** – plasmasphere, radiation belt **COMESEP** – coronal mass ejections, solar energetic particles, geomagnetic storms MAARBLE - ULF/VLF database, radiation belt dynamics SIDER - radiation shielding of composite enclosures

Manolis K. Georgoulis

ECLAT - magnetosphere, data mining & visualisation HESPE – solar high-energy data

eHeroes - DB&models for space

SHOCK - plasma, kinetic modelling SOLID – irradiance data &

Effects on space systems

FLARE CAST

FUSION: FLARECAST & OTHER EC PROJECTS FP7 SWx Projects Data exploitation

Ionospheric effects

AFFECTS - ionosphere, impact on communications **POPDAT** – database of ionospheric waves catalogues

Effects on ground systems

EURISGIC – geomagnetically induced currents in power systems

P. Chiarini, SWSC, 2013

GENERAL ASSEMBLY 2016

Atmospheric effects

ATMOP - thermosphere, better tracking of space objects in LEO

Global modelling

SWIFF - couplings at solar surface, in space and at Earth SOTERIA - better databases of existing data & simulation models

analysis

exploration

modelling

SPACECAST - radiation belt, solar energetic particles, protection of space assets SEPServer – SEP data and events **PLASMON** – plasmasphere, radiation belt COMESEP - coronal mass ejections, solar energetic particles, geomagnetic storms MAARBLE - ULF/VLF database, radiation belt dynamics SIDER - radiation shielding of composite enclosures

ECLAT - magnetosphere, data mining & visualisation **HESPE** – solar high-energy data

eHeroes - DB&models for space

SHOCK - plasma, kinetic modelling SOLID – irradiance data &

Effects on space systems

H2020 SWx Projects:

PROGRESS PROGRESS

HESPERIA

Manolis K. Georgoulis

FUSION: FLARECAST & OTHER EC PROJECTS FP7 SWx Projects Data exploitation

Ionospheric effects

AFFECTS - ionosphere, impact on communications **POPDAT** – database of ionospheric waves catalogues

Effects on ground systems

EURISGIC – geomagnetically induced currents in power systems

P. Chiarini, SWSC, 2013

EĜ

GENERAL ASSEMBLY 2016

Atmospheric effects

ATMOP - thermosphere, better tracking of space objects in LEO

Global modelling

SWIFF - couplings at solar surface, in space and at Earth SOTERIA - better databases of existing data & simulation models

analysis

exploration

modelling

SPACECAST - radiation belt, solar energetic particles, protection of space assets SEPServer – SEP data and events **PLASMON** – plasmasphere, radiation belt COMESEP - coronal mass ejections, solar energetic particles, geomagnetic storms MAARBLE - ULF/VLF database, radiation belt dynamics SIDER - radiation shielding of composite enclosures

Manolis K. Georgoulis

ECLAT - magnetosphere, data mining & visualisation HESPE – solar high-energy data

eHeroes - DB&models for space

SHOCK - plasma, kinetic modelling SOLID - irradiance data &

Effects on space systems

H2020 SWx Projects:

HESPERIA

Can we consolidate the accumulated know-how and expertise toward a future integrated SWx prediction platform?

THE VEHICLE: THE EC CONTINUES TO SUPPORT SWX RESEARCH FLARE CAST

TOPIC : Space Weather

Topic identifier: Publication date:	COMPET-5-2017 14 October 2015		
Types of action: DeadlineModel: Planned opening date:	RIA Research and Innovation action single-stage 08 November 2016	Deadline:	01 March

Horizon 2020 Pillar: Industrial Leadership Work Programme Year: H2020-2016-2017 Work Programme Part: Leadership in Enabling and Industrial Technologies - Space Call : H2020-COMPET-2017

COMPET-5-2017: "*Proposals are expected to improve the* understanding of Space Weather phenomena and their impact on space systems and terrestrial infrastructure, and are also expected to analyse viable mitigation strategies, and to demonstrate how these add value compared to existing mitigation strategies"

GENERAL ASSEMBLY 2016

2017 17:00:00

Time Zone : (Brussels time)

H2020 website

Call budget overview

Manolis K. Georgoulis

THE VEHICLE: THE EC CONTINUES TO SUPPORT SWX RESEARCH FLARE CAST

TOPIC : Space Weather

Topic identifier: Publication date:	COMPET-5-2017 14 October 2015		
Types of action: DeadlineModel: Planned opening date:	RIA Research and Innovation action single-stage 08 November 2016	Deadline:	01 March

Horizon 2020 Pillar: Industrial Leadership Work Programme Year: H2020-2016-2017 Work Programme Part: Leadership in Enabling and Industrial Technologies - Space Call : H2020-COMPET-2017

COMPET-5-2017: "Proposals are expected to improve the understanding of Space Weather phenomena and their impact on space systems and terrestrial infrastructure, and are also expected to analyse viable mitigation strategies, and to demonstrate how these add value compared to existing mitigation strategies"

GENERAL ASSEMBLY 2016

2017 17:00:00

Time Zone : (Brussels time)

H2020 website

Call budget overview

Plausible ways to tackle such calls:

- Expand / extend existing projects (can a single project lead to an integrated solution, though?)
- Fuse between different projects (aiming at one step at a time)

Vienna, April 18, 2016

Manolis K. Georgoulis

Manolis K. Georgoulis

★ FLARECAST : a PROTEC-2014 / Horizon 2020 solar flare-prediction project

Manolis K. Georgoulis

FLARE CAST

- ★ FLARECAST : a PROTEC-2014 / Horizon 2020 solar flare-prediction project
- \star date

FLARE CAST

To our knowledge] The most comprehensive flare-prediction effort attempted to

Manolis K. Georgoulis

- * FLARECAST : a PROTEC-2014 / Horizon 2020 solar flare-prediction project * [To our knowledge] The most comprehensive flare-prediction effort attempted to
- date
- ★ Synthesis in action: multi-level expertise, open-source infrastructure, "crowdsourcing" in terms of end-users performing new runs on new predictors

FLARE CAST

Manolis K. Georgoulis

- * FLARECAST : a PROTEC-2014 / Horizon 2020 solar flare-prediction project * [To our knowledge] The most comprehensive flare-prediction effort attempted to
- date
- ★ Synthesis in action: multi-level expertise, open-source infrastructure, "crowdsourcing" in terms of end-users performing new runs on new predictors
- ★ Is this enough for a comprehensive SWx forecasting? No! CMEs, SEPs

Manolis K. Georgoulis

- ★ FLARECAST : a PROTEC-2014 / Horizon 2020 solar flare-prediction project
- date
- ★ Synthesis in action: multi-level expertise, open-source infrastructure,
- * Is this enough for a comprehensive SWx forecasting? No! CMEs, SEPs
- other projects

* [To our knowledge] The most comprehensive flare-prediction effort attempted to

"crowdsourcing" in terms of end-users performing new runs on new predictors

* EC / ESA : Utilize the collage of existing projects and expertise to expand on and aim toward a unified, expandable infrastructure along the lines of FLARECAST and

Manolis K. Georgoulis

BACKUP SLIDES