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OUTLINE

» Solar flares and the prediction challenge

» Validation of flare prediction methods
e Dichotomous validation

e Probabilistic validation
» lalloring prediction methods to the customers’' needs

e Multi-variable forecasting
e Ensemble forecasting

» Conclusion
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SOLAR FLARES: THE SINGLE ...

GOES 3—sec X—ray data
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A sudden commencement of enhanced, localized electromagnetic emission extending over
practically the entire range of the electromagnetic spectrum, from y-ray to radio wavelengths
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SOLAR FLARES: ... AND THE PLENTY

GOES Xray Flux (5 minute data)
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Location of some 27,000 flares “Active” solar conditions over a 3-day period in
from the RHESSI database July 2000

Hannah et al. (2011)
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WHATARE SOLAR FLARES, PHYSICALLY AND STATISTICALLY?
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Flare occurrence number
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WHAT ARE SOLAR FLARES, PHYSICALLY AND STATISTICALLY?

Rkl Flares are (Rosner & Vaiana 1978).

Drake 1971) - . .
( M - Stochastic relaxation (storage and

f release) processes
» Physically uncoupled / independent

+ Brief, comparing to intermediate
times between flares

+ Leading to a power-law occurrence
frequency for flare enegies
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WHAT ARE SOLAR FLARES, PHYSICALLY AND STATISTICALLY?
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+ Stochastic relaxation (storage and
release) processes
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Brief, comparing to intermediate
times between flares

= —Vt
P(t)=ve Flare occurrence is a time-dependent

. Leading to a power-law occurrence  P0isson process (also Wheatland &
frequency for flare enegies Litvinenko 2002). This can explain power

laws In the flare distribution functions.
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THE FLARE-PREDICTION CHALLENGE ...
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time (NRT) observations of solar evolution

* Prediction typically incolves solar
photospheric (LOS or vector) magnetic
field measurements. SDO/HMI is the most
prominent source of these data

* Predictive parameters are inferred locally

Observational cadence:
— 45 s, for full-disk LOS data
— 720 s, for full-disk vector data

Reference: SOHO/MDI full-disk LOS data:
SHG0) S
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.. AND ITS SPECIFICS

m X-class flares m X-flaring active regions

NUMBERS

1975 1978 1981 1984 1987 1990 1993 1996 1999 2002 2005 2008 2011 2014
YEAR
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NUMBERS

.. AND ITS SPECIFICS

m X-class flares I%(Oflarmg active regions

1975 1978 1981 1984 1987 1990 1993 1996 1999 2002 2005 2008 2011 2014
YEAR
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... AND ITS SPECIFICS

m X-class flares l%((sflaring active regions

%45 W Sub-flaring & C-class-flaring
= B M-Class flaring
=% ¥ L} W X-class flaring

15
0

1975 1978 1981 1984 1987 1990 1993 1996 1999 2002 2005 2008 2011 2014
YEAR

I Only ~2% of active regions gave
at least one X-class flare in C23!
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DIFFERENT METHODS IN OPERATION WORLDWIDE

Mainly aiming to quantify the magnetic complexity of the host active regions
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Upper left: WLsc - Falconer et al. (2011)
Upper right: GWILL 0- Mason & Hoeksema (2010)

Lower left: R - Schrijver (2007)
Lower right: Berr - Georgoulis & Rust (2007)
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DIFFERENT METHODS IN OPERATION WORLDWIDE

Mainly aiming to quantify the magnetic complexity of the host active regions
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Upper left: WLsc -

Falconer et al. (2011)

Upper right: GWILL 0- Mason & Hoeksema (2010)
Lower left: R - Schrijver (2007)

Lower right: Ber -

Operational flare-prediction services:

* NOAA / SW

Georgoulis & Rust (2007)

20

e Max Millenr

ium / Solar Monitor

e UK Met Office

 U. Bradford

| ASAP

* NASA / SRAG / MAG4
s RosA [ KoPC

o ESA /[ A-EFFort

Goa, January 29,2016




A-EFFort

ESA's SSA / SWE A-EFFort METHOD e 7, \1—-
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IN FACT, MANY DIFFERENT METHODS.. .

Keyword
FOTUSIH
TOTBSQ
TOTPOT
rOTUSIZ
ABSNJZH

SAVNCPP

USFLUX

AREA_ACR

TOTFZ
MEANPOT
R_VALUE

EPSZ
SHRGT4S
MEANSHR

MEANGAM

MEANGBT

MEANGBZ

MEANGBH
MEANJZH
TOTFY
MEANJZD
MEANALP
TOTFX
EPSY

EPSX

Description
Total unsigned current helicity
Total magnitude of Lorentz force
Total photospheric magnetic free energy density
Total unsigned vertical current

Absolute value of the net current helicity

Sum of the modulus of the net current per polarity

Total unsigned flux
Area of strong field pixels in the active region
Sum of z-component of Lorentz force

Mean photospheric magnetic free energy

v

Sum of flux near polarity inversion line

Sum of z-component of normalized Lorentz force
Fraction of Area with shear = 45

Mean shear angle

Mean angle of field from radial
Mean gradient of total field
Mean gradient of vertical field

Mean gradient of horizontal field
Mean current helicity ( B- contribution)
Sum of y-component of Lorentz force
Mean vertical current density

Mean characteristic twist parameter, o
Sum of x-component of Lorentz force

Sum of y-component of normalized Lorentz force

Sum of x-component of normalized Lorentz force
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Bobra & Couvidat, ApJ, 2015

F-Score

2996
2733
2618

2448

2437
2047
1371
1064
1057
864.1
740.8
27.9

y73.3

88.40

79.40
46.73
28.92
17.44
10.41
6.147
(.647

(0.366

Selection

Included

Included

Included
Included

Included

Included

Included
Included

Included

Included
Included

Included
Included
Discarded

Discarded

Discarded

Discarded

Discarded
Discarded
Discarded
Discarded
Discarded
Discarded
Discarded

Discarded

Manolis K. Georgoulis

* plus many more:

* fractal / multifractal parameters
* other morphological parameters

* statistical / historical parameters

Goa, January 29,2016
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* plus many more:

* fractal / multifractal parameters
* other morphological parameters

* statistical / historical parameters

What is the optimal way to deal

with all this information and still

achieve reliable NRT forecasts

within a preset forecast window??

Goa, January 29,2016 |




VALIDATION : BORROWED BY TERRESTRIAL WEATHER FORECASTING
Categorical (dichotomous) validation: Flare (YES) or No Flare (NO)

Forecast Forecast

Flare No-flare

Observed Flare TP FN

Observed No-flare FP TN

Table courtesy: Shaun Bloomfield
2 X 2 contingency table

* [P :true positives  + Generalized skill score:
 FN : false negatives
o Score — Score

o [P :false positives Ky
[N :true negatives SCOVE , poer — SCOFE  ronce
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VALIDATION : BORROWED BY TERRESTRIAL WEATHER FORECASTING
Categorical (dichotomous) validation: Flare (YES) or No Flare (NO)

Forecast  Forecast +Heidke skill score (ref: random prediction):

Flare No-flare

2(TP+TN)- N

HSS =

Observed Flare TP FN N

Observed No-flare FP TN » Appleman skill score (ref: climatology [v]):

Table courtesy: Shaun Bloomfield ApSS = IP—FP
2 x 2 contingency table N
» [P true positives - Generalized skill score: .« Trye skill statistic (ref: weighting POD
e FN : false negatives POED)
| . score — score W. )
o FP :false positives Ryt
« TN : true negatives SCOT€,,, 10y — SCOVC, e 155 = POD — POFD
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CATEGORICAL FORECAST VERIFICATION METRICS

Metric Name Short Format Worst "No skill" Perfect
Name Score Score Score

Accuracy ACC (TP+TN)/N 0 1
Probability of detection POD TP/(TP +FN) 0 1

Probability of false POFD FP/(FP + TN )
detection

(false alarm rate)
False alarm ratio FP/(TP +FP)
True skill statistic POD - POFD

Heidke skill score (TP + TN -Erandom )/ (N -
Erandom )

Slide courtesy: Shaun Bloomfield
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CATEGORICAL VALIDATION IN A PROBABILISTIC FORECASTING?
One needs a threshold probability pthres (P 2 Pthres —> YES ; p < pthres —> NO)
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CATEGORICALVALIDATION IN A PROBABILISTIC FORECASTING?
One needs a threshold probability ptares (P 2 pthres —> YES ; p < pthres —> NO)
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CATEGORICALVALIDATION IN A PROBABILISTIC FORECASTING?
One needs a threshold probability ptares (P 2 pthres —> YES ; p < pthres —> NO)

Relative Operating Characteristic
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Source: WMO Forecast Verification Research
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PROBABILISTIC VALIDATION

Accept that a probability 0 < p <1 is assigned to each prediction
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PROBABILISTIC VALIDATION

Accept that a probability 0 < p <1 is assigned to each prediction

Correlate forecast probability with observed frequency

Compare your skill against climatology (mean flaring rate within
forecast window)
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PROBABILISTIC VALIDATION

Accept that a probability 0 < p <1 is assigned to each prediction

—_—

Correlate forecast probability with observed frequency

%;i o~ BSS=1 + Compare your skill against climatology (mean flaring rate within
& 10000 forecast window)
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PROBABILISTIC VALIDATIO

op T | Example probabilistic validation
: f J (A-EFFort):

(a) M1 and above: BSS = (.88
(b) M5 and above: BSS =0.78
(

c) X1 and above: BSS = 0.80
)

(=
@
(=
o™

O
o
O
o

o
>

Observed frequencies
o
NN

Observed frequencies

0.2

(d) X5 and above: BSS = 0.38

Observed frequencies

0.4 0.6 . 0 "Y%oo o 0.04 0.06
Predicted probabilities Predicted probabilities
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TAILORING FLARE PREDICTION METHODS TO THE CUSTOMER NEEDS

» Univariate forecasting is what all (but U. Bradford’'s ASAP) automated operational methods use
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TAILORING FLARE PREDICTION METHODS TO THE CUSTOMER NEEDS

» Univariate forecasting is what all (but U. Bradford’s ASAP) automated operational methods use
+Multivariate forecasting can also be used in the form of :

— Multi-variable predictors:

predictor = @, predictor, + @, predictor, + ...+ @, predictor, , @, ,..., @, unrestricted

— Ensemble forecasting:
P(flare)= w, P(flare)+ ®, P,(flare)+...+ w P (flare)

T+
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TAILORING FLARE PREDICTION METHODS TO THE CUSTOMER NEEDS

» Univariate forecasting is what all (but U. Bradford’s ASAP) automated operational methods use
+Multivariate forecasting can also be used in the form of :

— Multi-variable predictors:

predictor = @, predictor, + @, predictor, + ...+ @, predictor, , @, ,..., @, unrestricted

— Ensemble forecasting:
P(flare)= w, P(flare)+ ®, P,(flare)+...+ w P (flare)

+ Task: find w1, Wy, ..., wn such that validation results are optimized
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TAILORING FLARE PREDICTION METHODS TO THE CUSTOMER NEEDS

» Univariate forecasting is what all (but U. Bradford’s ASAP) automated operational methods use
+Multivariate forecasting can also be used in the form of :

— Multi-variable predictors:

predictor = @, predictor, + @, predictor, + ...+ @, predictor, , @, ..., @, unrestricted

— Ensemble forecasting:
P(flare)=w, P (flare)+w, P,(flare)+...+ o P (flare)

+ Task: find w1, Wy, ..., wn such that validation results are optimized

However: optimization means different things to different customers!
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SOME RECENT, PRELIMINARY EXAMPLES

» Multivariate forecasting

N
N

et PR ¢ Ordering of predictors

rejected TOTDSQG @

ToTPOT @ by means of a

TOTUSYUZ ©

AESNJZH © univariate Fisher

SAVNCPP @

usFLUX @ rank|ng Score

AREA_ACR ©

ToTFZ ® + Machine-learning

MEANPOT @

A_VALUE @ | f d t d
. classifiers adopte
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9 MEANSHH
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Bobra & Couvidat (2015)
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SOME RECENT, PRELIMINARY EXAMPLES

» Multivariate forecasting
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sfs) SCIENCE FOR SPACE WEATHER

+ Ensemble forecasting

» Ordering of predictors
by means of a
univariate Fisher
ranking score

» Machine-learning
classifiers adopted

+ Homogenizing the results of
multiple flare prediction
methods, using them with
equal or non-equal weights
for an ensemble forecasting

)
)
2
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TAMING THE (LARGE) PARAMETER SPACE: DISCRIMINANT ANALYSIS and/or PCA

Canonical Discriminant Analysis

|

Barnes et aI 2007

+  Group 1

* Group 2 C\ 'l
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Canonical Function 2
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Canonical Function 1

Two-function, linear DA for four-class

Example of two-function, three-group canonincal DA prediction (non-flaring, C, M, and X-class)
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FLARECAST: SYNTHESIS IN ACTION

FLARECAST is a European research project aiming to develop an

automated solar-flare forecasting system with unmatched accuracy
compared to existing facilities.

ST | FLARECAST, using diverse European expertise, will:

flarecast.eu * Use or reproduce already available predictors
» classify predictors with respect to predictive abllity
« validate results in different ways

Project Partners:

- Academy of Athens, Greece

- Trinity College Dublin, Ireland

- Universita Degli Studi Di Genova, ltaly

- Consiglio Nazionale Delle Ricerche, ltaly

- Centre National de la Recherche Scientifique, France
- Université Paris-Sud, France

- Fachhochschule Nordwestschweiz, Switzerland

- Met Office, United Kingdom
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flarecast.eu

Project Partners:

- Academy of Athens, Greece

- Trinity College Dublin, Ireland

- Universita Degli Studi Di Genova, ltaly

- Consiglio Nazionale Delle Ricerche, ltaly

FLARECAST: SYNTHESIS IN ACTION

FLARECAST is a European research project aiming to develop an

automated solar-flare forecasting system with unmatched accuracy
compared to existing facilities.

FLARECAST, using diverse European expertise, will:
* Use or reproduce already available predictors

» classify predictors with respect to predictive abllity
» validate results in different ways

The FLARECAST forecasting system will be openly
accessible, featuring open-source software that will allow end
users to perform their own tests. In this way FLARECAST will

. Centre National de la Recherche Scientifique, France aim to both revamp solar flare prediction and contribute to a

- Université Paris-Sud, France

- Fachhochschule Nordwestschweiz, Switzerland

- Met Office, United Kingdom
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better understanding of the drivers of flare activity.
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FLARECAST DATAMODEL & INFRASTRUCTURE : COLLECTIVE EXPERTISE

— FLARECAST Datamodel

- Download ¥ - Feature Extraction — Flare Prediction (s —

Flare prediction

/ \ .
C__ ] ceature p t algorithms
Data Loader cature Froperty (training)
Extractor
R

Flare prediction Forecast
— — algorithms verification
(execution) algorithms

- FLARECAST Infrastructure X

N
N

Management Infrastructure

Legend
read

— Write
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CONCLUSIONS

» Solar flare prediction: consensus that it should be an asset of our space-weather
forecasting toollbox

» Validation: a vital task, done in multiple ways as per the customer’s needs

» \We should understand how to enhance various validation metrics against others

» Qur ultimate task should be to bring a purely probabilistic prediction (due to
stochasticity of the process) as close as possible to a categorical (YES / NO) one

» [he solution to this will not be unigue - however, the used methods should be

» Customized forecasts should rely on multivatiate or ensemble modeling

» Standard datasets could also be created for the validation of all methods
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CONCLUSIONS

» Solar flare prediction: consensus that it should be an asset of our space-weather
forecasting toollbox

» Validation: a vital task, done in multiple ways as per the customer’s needs

» \We should understand how to enhance various validation metrics against others

» Qur ultimate task should be to bring a purely probabilistic prediction (due to
stochasticity of the process) as close as possible to a categorical (YES / NO) one

» [he solution to this will not be unigue - however, the used methods should be

» Customized forecasts should rely on multivatiate or ensemble modeling

» Standard datasets could also be created for the validation of all methods

All these tasks are being investigated by the FLARECAST Consortium
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