

l'rinity College Dublin

The University of Dublin

Introduction

FLARECAST (Flare Likelihood And Region Eruption **foreCASTing)** is a European Union Horizon 2020 project that aims to develop an automated solar flare forecasting system with an unmatched accuracy.

northumbria

UNIVERSITY NEWCASTL

• A central FLARECAST work packages is the implementation of both existing and newly developed **algorithms** that extract solar active-region (AR) properties showing a flare-forecasting capability (see Table 1).

Data Source	Property Group		
SWPC catalogues	Solar Region Summary (SRS) properties		
	GOES soft X-ray flare events		
Line-of-sight magnetograms	SMART-derived properties		
	B _{eff} (effective connected magnetic field strength)		
	Fractal and multifractal parameters		
	Fourier and CWT power spectral indices		
	Decay index		
	Magnetic polarity inversion line properties		
	3D magnetic null point		
	Ising energy		
	Magnetic helicity injection rate proxy		
Vector magnetograms	SHARP properties		
	Magnetic helicity injection rate		
	Magnetic energy injection rate		
	Non-neutralized currents		
	Diverging/converging/shear flows		
Intensity images	Flow field properties		

Table 1. AR properties considered in FLARECAST

• FLARECAST will combine AR properties calculated from **SDO/HMI** data with state-of-the-art prediction algorithms.

AR Properties

Considered properties characterize different areas/aspects of the active region:

 Total MPIL length Schrijver's <i>R</i> 		AR PHOTOSPHERE	
MPIL	• Ratio L/ h _{min} for L _{max}	• B _{eff} • Ising energy	 Fourier power spectral index, α
CORONA*			* By means of potenti
L _{max} = Longest MPIL h _{min} = height for n = n _c = 1.5			field extrapolation or photospheric proxies

Solar Magnetic Data Analysis for the FLARECAST Project

J. A. Guerra¹, S.-H. Park¹, I. Kontogiannis², P. T. Gallagher¹, M. K. Georgoulis², D. S. Bloomfield^{1,3} and the FLARECAST team ¹ Trinity College Dublin, Ireland , ² RCAAM, Academy of Athens, Greece, ³ Northumbria University, UK.

- 47,151 SDO/HMI SHARP CEA NRT files)
- strength, f) Ising energy.

Flare Association

Figure 5. Flaring association for the calculated active region's properties. Most parameters calculated with B_{los} see more flares at lower values compared to B_r. Different flaring association implies properties from both components should be used. The advantage of using either B_{los} or B_r (when or where) will be determined by prediction methods.

References

- 1. Guerra et. al. (2017, In preparation) 2. Georgoulis & Rust (2007), ApJL, 661, 109
- 3. Guerra et. al. (2015), Sol. Phys., 290, 335 4. Zuccarello et al. (2014), ApJ, 785, 88

SHARP regions associated with GOES soft X-ray flares that subsequently occur from that SHARP field-of-view within the following 24 hr. Figure 5 shows the sample fractions of parameter values that produce flaring at C-class or above. Uncertainties correspond to Poisson error bars.

FLARECAST is an EC H2020 project.

