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OUTLINE

* \Why do we need flare prediction?

* The nature of flare occurrence - are flares random?

* Can flares be predicted? — different methods
* Recent trends in solar flare prediction

* \alidation : process and intrinsics

* From a method to an operational forecasting service

* Conclusion
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WHY PREDICT SOLAR FLARES?

solar arrival of “hard” arrival of first flare-
flare (X-, Y)-ray photons accelerated particles

arrival of CME-shock-

to to+ 8 min ~ to+ 20 min
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WHY PREDICT SOLAR FLARES?

solar arrival of “hard” arrival of first flare- rrival of C T
flare (X-, Y)-ray photons accelerated particles e

arrival of CME-shock- e

to to+ 8 min ~ to+ 20 min to+ 2-4 days
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Hard flare photons and non-thermal particulate (mostly
protons >0 MeV) affect humans beyond LEO and on il
solar system bodies lacking an atmosphere. Damages in
space-based electronics, radio blackouts, etc., can occur as

a result of flares
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WHY PREDICT SOLAR FLARES?

solar arrival of “hard” arrival of first flare- rrival of C T
flare (X-, Y)-ray photons accelerated particles e

arrival of CME-shock- s

to to+ 8 min ~ to+ 20 min

Hard flare photons and non-thermal particulate (mostly
protons >0 MeV) affect humans beyond LEO and on .
solar system bodies lacking an atmosphere. Damages in
space-based electronics, radio blackouts, etc., can occur as

a result of flares

~No early warning time for flare photons -
slim window for particulate in worst case!
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MAJOR FLARE REPERCUSSIONS: EVERYTHING UNDER THE SUN
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PHENOMENOLOGY DEFINITION ...

GOES 3—sec X—ray data

1077 X -z
Z 107 i 'Z
102k —
www.he éyiewer.org @ 107 . | . . | . - I - . I - i l - B r>
07.00 g7:30 Start Tim ?gg:(i{'iug_” 06:34:33) 08:30 09:C0 09:3¢C
A sudden commencement of enhanced, localized electromagnetic emission extending over practically the entire range of the
electromagnetic spectrum. Typically measured in 1 - 8 A SXR
ESWW13 M. K. Georgoulis & R. Qahwaji Oostende, November 18,2016 +;




PHENOMENOLOGY DEFINITION ...

GOES 3—sec X—ray data

1077 X -z
Z 107 i 'Z
102k —
www.he éyiewer.org @ 107 . | . . | . - I - . I - i l - B r>
07.00 g7:30 Start Tim ?gg:(i{'iug_” 06:34:33) 08:30 09:C0 09:3¢C
A sudden commencement of enhanced, localized electromagnetic emission extending over practically the entire range of the
electromagnetic spectrum. Typically measured in 1 - 8 A SXR
ESWW13 M. K. Georgoulis & R. Qahwaji Oostende, November 18,2016 +;




... AND STATISTICAL BEHAVIOR

No. of flares per class over typical solar cycle
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NATURE OF FLARE OCCURRENCE
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NATURE OF FLARE OCCURRENCE

SAM BN [lares are (Rosner & Vaiana 1978).

+ Stochastic relaxation (storage and
release) processes

» Physically uncoupled / independent

+ Brief, comparing to intermediate
times between flares

+ Leading to a power-law occurrence
frequency for flare energies
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Flare occurrence number vs.
integrated photon flux
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NATURE OF FLARE OCCURRENCE
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Flare occurrence number vs.

Flares are (Rosner & Vaiana 1978):

+ Stochastic relaxation (storage and

release) processes

» Physically uncoupled / independent

+ Brief, comparing to intermediate

times between flares

+ Leading to a power-law occurrence
frequency for flare energies

M. K. Georgoulis & R. Qahwaiji

Power-law distribution of flare size later

attributed to the concept of self-

organized criticality (1990s)




A RATHER GRAPHIC EXAMPLE OF MARGINAL STABILITY

Credit: Aaron Mak - YouTube
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A RATHER GRAPHIC EXAMPLE OF MARGINAL STABILITY

Credit: Aaron Mak - YouTube
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HOWEVER, ARE FLARES RANDOM? - DISTRIBUTION OF WAITING
TIMES
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HOWEVER, ARE FLARES RANDOM? - DISTRIBUTION OF WAITING

Crosby, PhD Thesis (1996)

Exponential law of waiting
times: a totally random,
memoryless flare occurrence
along the classical self-
organized criticality concept
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HOWEVER, ARE FLARES RANDOM? - DISTRIBUTION OF WAITING
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Crosby, PhD Thesis (1996)
Bofetta et al., (1999)

Exponential law of waiting Robust power-law of waiting
times: a totally random, times: a system perfectly
memoryless flare occurrence keeping a memory in giving

along the classical self-
organized criticality concept

flares
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HOWEVER, ARE FLARES RANDOM? - DISTRIBUTION OF WAITING
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Exponential law of waiting Robust power-law of waiting  Time-dependent Poisson scaling in
o, times: a system perfectly waiting times: some memory kept, with
memoaryless flare occurrence keeping a memory in giving stochasticity demonstrated in an
ol .the chgsmgI S flares exponential distribution of different flaring
organized criticality concept ratas
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A MIX OF STOCHASTICITY AND MEMORY
. NOAAAR 10930

GOES 3-sec X—ray data | | | | + Period observed: ~16 days

AT A

I A B 11 AN

Clustering of flares in a flaring active region

Flaring features of active regions, i.e., complex
magnetic PILs, continuously and consistently
| ! ! | ! ! ! ! . driven

11-Cec 14—DCec
Start Time (04—Dec—06 Q0:00:00)

Response of NOAA AR 10930 over a two-week period in Dec 2006 Typical situation of a pink-noise dynamical
| response timeseries
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A MIX OF STOCHASTICITY AND MEMORY
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+ NOAAAR 10930
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Response of NOAA AR 10930 over a two-week period in Dec 2006 + Typical situation of a pink-noise dynamical
response timeseries
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QUALITATIVE COMPLEXITY CLASSIFICATION

MODIFIED McIntosh M ln h 1 : g :
HEEs | Sunspot Group Classification ALY Mount Wilson classification

alpha: A unipolar sunspot group.
PENUMBRA: LARGEST SPOT
Interior beta: A sunspot group having both positive and negative magnetic
polarities (bipolar), with a simple and distinct division between the
polarities.

gamma: A complex active region 1n which the positive and negative
polarities are so irregularly distributed as to prevent classification as
a bipolar group.

beta-gamma: A sunspot group that 1s bipolar but which 1s sufficiliently
complex that no single, continuous line can be drawn between spots of
opposite polarities.

delta: A qualifier to magnetic classes(see below) i1ndicating that umbrae
separated by less than 2 degrees within one penumbra have opposite
polarity.

beta-delta: A sunspot group of general beta magnetic classification but
contalning one (or more) delta spot(s).

beta-gamma-delta: A sunspot group of beta-gamma magnetic classification
but containing one (or more) delta spot(s).

gamma-delta: A sunspot group of gamma magnetic classification but
contalning one (or more) delta spot(s).

Source: spaceweather.com

M. K. Georgoulis & R. Qahwaii Oostende, November 18,2016 ﬂ
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QUALITATIVE COMPLEXITY CLASSIFICATION

MODIFIED McIntosh . i
HEEs | Sunspot Group Classification ALY Mount Wilson classification

alpha: A unipolar sunspot group.
PENUMBRA: LARGEST SPOT
Interior beta: A sunspot group having both positive and negative magnetic
polarities (bipolar), with a simple and distinct division between the
polarities.

gamma: A complex active region 1n which the positive and negative
polarities are so irregularly distributed as to prevent classification as
a bipolar group.

SUNSPOT DISTRIBUTION

beta-gamma: A sunspot group that 1s bipolar but which 1s sufficiliently
complex that no single, continuous line can be drawn between spots of
opposite polarities.
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beta-delta: A sunspot group of general beta magnetic classification but
contalning one (or more) delta spot(s).

beta-gamma-delta: A sunspot group of beta-gamma magnetic classification
but containing one (or more) delta spot(s).

gamma-delta: A sunspot group of gamma magnetic classification but
contalning one (or more) delta spot(s).

Source: spaceweather.com

The 3-component Mclntosh classification, with examples of each category.
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QUANTITATIVE COMPLEXITY CLASSIFICATION

Numerous methods over the past 20 years. An effort to categorize them results in the following (Georgoulis, 2012):
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QUANTITATIVE COMPLEXITY CLASSIFICATION

Numerous methods over the past 20 years. An effort to categorize them results in the following (Georgoulis, 2012):
 Monoscale / multiscale methods

e Morphological methods

e Statistical methods (on historical &
archived data)

e Machine-learning, combinatorial,
& assimilation methods

e Analytical methods

e Local helioseismology methods

e Other (slightly exotic) methods

!
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QUANTITATIVE COMPLEXITY CLASSIFICATION

Numerous methods over the past 20 years. An effort to categorize them results in the following (Georgoulis, 2012):

Abramenko et al. (2002, 2003); McAteer at al. (2005); Georgoulis (2005, 2012); Uritsky et al. (2007,

* Monoscale / multiscale methods 2013); Hewett et al. (2008); Conlon et al. (2010); Kestener et al. (2010), McAteer (2015)
e Mornholoaical method Falconer etal. (2001, 2002, 2003, 2008, 2009, 2011); Georrgoulis & Rust (2007); Schrijver (2007); Mason &
0rpnological metnoas Hoeksema (2010); Leka & Barnes (2003a; b); Cabnfield et al. (1999); Barnes & Leka (2008), Korsos et al. (2015)

e Statistical methods (on historical &
archived data)

Wheatland (2001); Moon et al. (2001); Gallagher et al. (2002); Wheatland (2004, 20053, b)

Belanger et al. (2007); Qahwaji & Colak (2007); Colak & Qahwaji (2008, 2009); Qahwaji et al. (2008); Al-

e Machine-learning, combinatorial, ,
Omari etal. (2010); Yu et al. (2009; 20103, b); Huang et al. (2010) ; Bobra & Couvidat(2014); Bobra &

& assimilation methods llonidis (2015): Boucheron et al., (2015); Nishizuka et al., (2016)
° Ana\y’[ica\ methods Wheatland & Glukhov (1998); Wheatland (2008)
e |ocal he\iggeigmok)gy methods Reinard et al. (2010); Komm etal.(2011), etc.
e Other (S‘Ighﬂy GXOtiC) methods Jenkins & Fischbach (2009); Javorsek et al. (2012); Strugarek & Charbonneau (2014)

!
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@ ESWWA13 M. K. Georgoulis & R. Qahwaj Oostende, November 18,2016 ﬂ + 73




ANALYSIS OF PHOTOSPHERIC ACTIVE-REGION MAGNETOGRAMS

Barnes et al., (2016)

M. K. Georgoulis & R. Qahwaiji




PROPERTIES TRAN

LATED TO PREDICTIVE PROBABILITIES

Keyword

Description

F-Score

Selection

FOTUSIH
TOTBSQ
TOTPOT
rOTUSIZ
ABSNJZH

SAVNCPP

USFLUX
AREA_ACR
TOTFZ
MEANPOT
R_VALUE
EPSZ
SHRGT4S5
MEANSHR

MEANGAM

MEANGBT

MEANGBZ

MEANGBH
MEANJZH
TOTFY
MEANJZD
MEANALP
TOTFX
EPSY

EPSX

Total unsigned current helicity
Total magnitude of Lorentz force

Total photospheric magnetic free energy density

Total unsigned vertical current

Absolute value of the net current helicity

Sum of the modulus of the net current per polarity

Total unsigned flux

Area of strong field pixels in the active region
Sum of z-component of Lorentz force

Mean photospheric magnetic free energy

Sum of flux near polarity inversion line

Sum of z-component of normalized Lorentz force
Fraction of Area with shear = 45

Mean shear angle

Mean angle of field from radial
Mean gradient of total field
Mean gradient of vertical field

Mean gradient of horizontal field
Mean current helicity ( B- contribution)
Sum of y-component of Lorentz force
Mean vertical current density

Mean characteristic twist parameter, o
Sum of x-component of Lorentz force

Sum of y-component of normalized Lorentz force

Sum of x-component of normalized Lorentz force

Formula
H

Cloal X Z |B- - J
Fo) B2

o & Y (BO — BPO)® g4

o = 2 | J-|d A

He,. o |> B.-J.|

B!

L/¢/§

D =) |B.|dA

Area = ) Pixels
F. o< 3 (B + B} — BZ)dA
ﬁ X T'-l\' >_: (B()h.\ Bpm):

® = > |Br,s|dA within R mask

S (B2+B2—-B?)
) B

o F: 4

Area with shear = 45 / total area

< | . BINn Bl’ul )
7 arcCcos\ ——s—+v—
l I\ >_4 IrCC( ( |”()|'\| ]”I ol '

- _ 1 —
Y = % Zargmn(ﬂ—:")

3560
3051

2996
2733
2618

2448

2437
2047
1371
1064
1057

864.1
740 .8
727.9

573.3

192.3

88.40

79.40

46.73
28.92
17.44
10.41
6.147
(.647

(0.366

Included
Included

Included
Included

Included

Included

Included
Included
Included

Included
Included

Included
Included
Discarded

Discarded

Discarded

Discarded

Discarded
Discarded
Discarded
Discarded
Discarded
Discarded
Discarded

Discarded

Bobra & Couvidat (2014)

ESWW13
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Discriminant analysis: Two-function, linear DA for
four-class prediction (non-flaring, C, M, and X-class)
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PROPERTIES TRANSLATED TO PREDICTIVE PROBABILITIES

Keyword Description Formula F-Score Selection
rOTUSIH Total unsigned current helicity Hey x> |B:-J] 3560 Included
TOTBSQ Total magnitude of Lorentz force Fo Y B? 3051 Included
ol 2 .
TOTPOT Total photospheric magnetic free energy density Pror X Z (B> — B™Y) dA 2996 Included
rOTUSIZ Total unsigned vertical current o = 2 |Jz|dA 2733 Included
ABSNJZH Absolute value of the net current helicity He, o |3 B.-J. | 2618 Included
B? '
- . . . B ) - .
SAVNCPP Sum of the modulus of the net current per polarity Joim & L J.dA|+ . M(IA‘ 2448 Included
USFLUX Total unsigned flux d =) |B.ldA 2437 Included
AREA_ACR Area of strong field pixels in the active region Area = ) _ Pixels 2047 Included
TOTFZ Sum of z-component of Lorentz force F. oY (B +B: — B>)dA 1371 Included
- . . 2oty 2
MEANPOT Mean photospheric magnetic free energy p X % )3 (BO" B"") 1064 Included
R_VALUE Sum of flux near polarity inversion line ® = > |Br,s|dA within R mask 1057 Included
) S (B2+B2—-B?)

EPSZ Sum of z-component of normalized Lorentz force dF. S 364.1 Included
SHRGT45 Fraction of Area with shear = 45 Area wi

MEANSHR Mean shear angle

MEANGAM

MEANGBT

MEANGBZ

MEANGBH

MEANJZH

TOTFY

MEANJZD

MEANALP

TOTFX

EPSY

EPSX

Mean angle of field from radial
Mean gradient of total field
Mean gradient of vertical field

Mean gradient of horizontal field

Mean current helicity ( B- contribution)

Sum of y-component of Lorentz force
Mean vertical current density

Mean characteristic twist parameter, o
Sum of x-component of Lorentz force

Sum of y-component of normalized Lorentz force

Sum of x-component of normalized Lorentz force

|VB)’:| —

N .
H,. o L B . 46.73

Fy Z B, B.d A 28.92
Lo X (5 - ) 17.44
ot ¢ S 10.41

F, « —Y B,B.dA 6.147
SFy ox —gte 0.647

0.366

i WWhat Is the optimal way to deal
with all this information and still
ach|eve rehable NRT forecasts? i

Discarded
Discarded
Discarded
Discarded
Discarded
Discarded

Discarded

Bobra & Couvidat (2014)
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RECENT TREDS IN FLARE PREDICTION

+ Most (excluding machine-learning) methods use a univariate predictor.
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RECENT TREDS IN FLARE PREDICTION

+ Most (excluding machine-learning) methods use a univariate predictor.

+ Multivariate forecasting can also be used in the form of :

— Synthetic predictors:

predictor = @, predictor, + @, predictor, + ...+ @, predictor,

— Ensemble forecasting:

P(flare)=w, P,(flare)+ ®, P,(flare)+ ...+ @ P (flare)

M. K. Georgoulis & R. Qahwaiji
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RECENT TREDS IN FLARE PREDICTION

+ Most (excluding machine-learning) methods use a univariate predictor.

+ Multivariate forecasting can also be used in the form of :

— Synthetic predictors:

predictor = @, predictor, + @, predictor, + ...+ @, predictor,

— Ensemble forecasting:

P(flare)=w, P,(flare)+ ®, P,(flare)+ ...+ @ P (flare)

+ Task: find w1, wy, ..., wn such that validation results are optimized

M. K. Georgoulis & R. Qahwaiji

0, 0,,., O

Oostende, November 18,2016 ‘B

n

unrestricted

ow |




RECENT TREDS IN FLARE PREDICTION

+ Most (excluding machine-learning) methods use a univariate predictor.
+ Multivariate forecasting can also be used in the form of :

— Synthetic predictors:

predictor = @, predictor, + @, predictor, + ...+ @, predictor, W, q,,.., ®,6 unrestricted

— Ensemble forecasting:

P(flare)= w, P(flare)+ ®, P,(flare)+...+ w P (flare)

+ Task: find w1, wy, ..., wn such that validation results are optimized

However: optimization means different things to different communities!

M. K. Georgoulis & R. Qahwaji Oostende, November 18,2016 F +




INDICATIVE RESULTS

» Multivariate forecasting
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» Ordering of predictors

by means of a
univariate Fisher
ranking score
Machine-learning
classifiers adopted

Homogenizing the results of
multiple flare prediction
methods, using them with
equal or non-equal weights
for an ensemble forecasting
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INDICATIVE RESULTS

» Multivariate forecasting
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» Ordering of predictors

by means of a
univariate Fisher
ranking score

» Machine-learning
classifiers adopted

+ Homogenizing the results of
multiple flare prediction
methods, using them with
equal or non-equal weights
for an ensemble forecasting

M. K. Georgoulis & R. Qahwaiji

+ Ensemble forecasting
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JUDGING WHICH METHODS WORK: VALIDATION

+ Existing methods are borrowed from terrestrial weather forecasting

+Two types of validation

+ On binary (YES / NO) prediction output
+ On probabilistic (0 < p < 1) prediction output

» Both are used in flare prediction

g . JJ
O g M. K. Georgoulis & R. Qahwaj Oostende, November 18,2016




VALIDATION: BORROWED BY TERRESTRIAL WEATHER FORECASTING

Binary validation: Flare (YES) or No Flare (NO)  Tajloring according to different end user needs

Forecast Forecast

Flare No-flare

Observed Flare TP FN

Observed No-flare FP TN

. Table courtesy: Shaun Bloomfield
2 X 2 contingency table .

+ TP : true positives - Generalized skill score:

+ FN : false negatives

+ FP : false positives S = _ OOre T O Crerence
+ TN : true negatives SCOT€ 1 — SCOTC, ot ronce

@ ESWW13 M. K. Georgoulis & R. Qahwaji Oostende, November 18, 2016

Qi
+

L1,




VALIDATION: BORROWED BY TERRESTRIAL WEATHER FORECASTING

Binary validation: Flare (YES) or No Flare (NO)  Tajloring according to different end user needs

Forecast | Forecast +Heidke skill score (ref: random prediction):

Flare No-flare

2(TP+TN)- N

HSS =
N

Observed Flare TP FN

Ohserved No-flare £p ™ + Appleman skill score (ref. climatology [v]):

ApSS IP—-FP

. Tabl - Shaun Bloomfiel =

2 x 2 contingency table able courtesy: Shaun Bloomfield P N

L s i . True skill statistic (ref: weighting POD w. POFD);
+ FN : false negatives o e

+ FP : false positives SS = _ SCOTeT 0O Creperence

. TN : true negatives score,, .., — Score, .. 155 = POD — POFD

O ESWW13 M. K. Georgoulis & R. Qahwaj Oostende, November 18,2016
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(SOME) BINARY FORECAST VERIFICATION METRICS

Metric Name Short Format Worst "No skill"
Name Score Score

Accuracy ACC (TP+TN)/N 0
Probability of detection POD TP/(TP +FN) 0

Probability of false POFD FP/(FP + TN )
detection

(false alarm rate)
False alarm ratio FP/(TP +FP)
True skill statistic POD - POFD

Heidke skill score (TP + TN -Erandom )/ (N -
Erandom )

Slide courtesy: Shaun Bloomfield

- s v 4
\\6 ESWW13 M. K. Georgoulis & R. Qahwaji Oostende, November 18,2016
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SOME INDICATIVE RESULTS

C-class Above C1.0
- = —— M-=<lass ’ - === Above M1 .0
........... X-class Above X1.0
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SOME INDICATIVE RESULTS
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PROBABILISTIC VALIDATION

Accept that a probability 0 < p <1 is assigned to each prediction

¥ Samples

(chmatology)
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PROBABILISTIC VALIDATION

Accept that a probability 0 < p <1 is assigned to each prediction

—_—

+ Correlate forecast probability with observed frequency

+ Compare your skill against climatology (mean flaring rate within
forecast window)
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Generalized skill score:
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PROBABILISTIC VALIDATION

Accept that a probability 0 < p <1 is assigned to each prediction

—_—

Correlate forecast probability with observed frequency

;;i o BSGE + Compare your skill against climatology (mean flaring rate within
& 10000 forecast window)
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FIRST EFFORT TO COMPARE METHOD PERFORMANCES ON COMMON DATA

SETS
Recently published (Barnes et al., 2016)

No Event Event No Event Event No  Event
Event Rate Event Rate Event Rate
AD MCD#1 MCD#2
C1.0+, 24 hr 2609 10356 0.201 3751 0.174 249 128  0.660

Parameter/ Statistical C1.04, 24hr MI1.0+, 12hr M5.0+, 12hr
Method Method ApSS BSS ApSS BSS ApSS BSS

Best Bayesian 0.12 0.06 0.00 0.03 0.00 0.02

ASAP Machine 0.25 0.30 0.01 -0.01 0.00 -0.84
BBSO Machine 0.08 0.10 0.03 0.06 0.00 -0.01

M1.0+, 12 hr 400 12565 0.031 3162 0.031 70 220 0.241
M5.04, 12 hr 93 12872 0.007 3633 0.007 21 270 0.072

W Lsa2 Curve fitting N/A N/A 0.04 0.06 0.00 0.02

NWRA MAG 2-VAR NPDA 0.24 0.32 0.04 0.13 0.00 0.06
log(R) NPDA 0.17 0.22 0.01 0.10 0.02 0.04
GCD NPDA 0.02 0.07 0.00 0.03 0.00 0.02
NWRA MCT 2-VAR NPDA 0.23 0.28 0.05 0.14 0.00 0.06
SMART?2 CCNN 0.24 -0.12 0.01 -4.31 0.00 -11.2
Event Statistics, 10 prior Bayesian 0.13 0.04 0.01 0.10 0.01 0.00
MecIntosh Poisson 0.15 0.07 000 -0.06 N/A N/A

A L+
\\6 ESWW13 M. K. Georgoulis & R. Qahwaj Oostende, November 18,2016 Lt
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FIRST EFFORT TO COMPARE METHOD PERFORMANCES ON COMMON DATA

SETS
Recently published (Barnes et al., 2016)

Event Event No  Event Event No Event Event No  Event
List Event Rate Event Rate Event Rate

AD MCD#1 MCD#2
C1.0+, 24 hr 2 10356 .20 78 3751 0.174 249 128  0.660

Parameter/ Statistical C1.0+,
Method Method ApSS A
Bes Bayesian 0.12
ASAP Machine 0.25

BBSO Machine 0.08
W Lsa2 Curve fitting N//

M1.0+, 12 hr * 03’ 2 3162 0.031 70
M5.04, 12 hr : 007 26 3633 0.007 21

NWRA MAG 2-VAR NPDA 0.2
log(R) NPDA 0.17
GCD NPDA 0.0
NWRA MCT 2-VAR NPDA 0.23

SMART?2 CCNN 024\ 012 [oo1| -431 Jo. : Appa.rently VYOFSG BSS for scarcer
Event Statistics, 10 prior Bayesian 0.13 0 . . . : (|e, |ncreaS|ng ﬂare ClaSS) events

MelIntosh Poisson 0.15

Typically a bit - but not much - better than climatology (> 0) / quite often worse than climatology (< 0)

== -
E@ ESWW13 M. K. Georgoulis & R. Qahwaji Oostende, November 18,2016 = S
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FIRST EFFORT TO COMPARE METHOD PERFORMANCES ON COMMON DATA
SET
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VALIDATION REQUIREMENTS

+ Balanced dataset of flaring and non-
flaring populations (correct flaring rates)

O ESWW13

M. K. Georgoulis & R. Qahwaiji

Oostende, November 18,2016
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VALIDATION REQUIREMENTS

+ Balanced dataset of flaring and non-

Daily flare frequency

flaring populations (correct flaring rates)

—— 1-month binning
~ |=—— 3-month binning

Flares of GOES class M1 and above - Total of 689 events
6-month binning
_ |=—— 12-month binning
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Total of 137 events
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Flaring rates over solar cycle 23 (M1+, M5+, X1+, X5+)
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VALIDATION REQUIREMENTS

+ Balanced dataset of flaring and non- Large number of validation tests, using
flaring populations (correct flaring rates) randomly chosen training and test sets

Flares of GOES class M1 and above - Total of 689 events Flares of GOES class M5 and above - Total of 137 events
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Besides the idea
(prediction method),
an infrastructure is
also needed

Generated by ASAP http: /fspaceweather. inf. brad. ac. uk/f
5/ 22010 12: 35 y . |
ASAP’s Output: Flare Monitor. Visualisation of Complete aUtOmathn

the detected sunspots, their classifications, and :
flare probabilities. meanS

+ Ease of calculations
+ Ease of
maintenance
Resilience
Modularity, for
ASAP improvement

ASAP: The first flare prediction service utilizing machine learning methods

I g ; 1] J’t + +
O ESWW13 M. K. Georgoulis & R. Qahwaji Oostende, November 18,2016
: 2. +

e




EXISTING FLARE PREDICTION SERVICES AROUND THE WORLD

Next updatein: 01:17:09 Home About us Product info Feedback form Register for e-mail alerts

Detected Sunspot Groups Detected Sunspot Groups \ 1

A-EFFort \‘*- -

Athens Effective

Solar Flare Forecasting / \

© A-EFfFort

2015-11-01 Sk - Lo o 19:10:12 VI XS: OO/O

Vi | . +) Current EUV flux information from 9
iew larger image \7)
9 9 N PROBA2 / LYRA instrument

NO CLS M

01 HRX 'P
o: CAD

www.SelarMenitor.org

05 AXX
06 DRO

YOrKus
M- 2014/05/21 124 (

Guerra et al., (2015)
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A NUMBER OF FORTHCOMING SERVICES

FLARECAST Datamodel =

Download ¥ Feature Extraction Flare Prediction (3

Flare prediction —__
r . .
Data Loader cature Froperty (training)
Extractor

Flare prediction P Forecast

algorithms verification
(execution) algorithms

FLARECAST Infrastructure

Management Infrastructure

FLARETSCR

\\6 ESWW13 M. K. Georgoulis & R. Qahwaji
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A NUMBER OF FORTHCOMING SERVICES

FLARECAST Datamodel =

Download ¥ Feature Extraction (3 Flare Prediction 3

Flare prediction —__
raining) -
r . .
Data Loader cature Frope (training)
XTtractor

Flare prediction P Forecast
S algorithms verification

(execution) algorithms

FLARECAST Infrastructure

Management Infrastructure

Europe, USA, Japan

FLARETSCR

+ Fact: Virtually all planned services rely essentially on multivariate predictors
» Aphorism: validation, validation, validation ...
k\@ ESWW13 M. K. Georgoulis & R. Qahwaji Oostende, November 18,2016




CONCLUSIONS

* Consensus that reliable, automated solar flare prediction should be an asset of our SWE forecasting efforts

* (Can flares be predicted, however?
* Quite likely, major flare prediction will remain probabilistic in the future

+ But s this due to the nature of the problem, or due to lack of crucial information or a flawed approach?

* How far along we can go remains TBS — the goal of various flare forecasting efforts is to bring
probabilistic flare prediction as close as possible to a binary (YES / NO one)

* Customized, but always unbiased, validation : its importance cannot be stressed enough

* Multivariate forecasting, enabled by machine-learning and other methods (i.e., PCA, DA) seems to be the
norm for future services — we can do it nowadays, can't we?

*» However, we need to raise Occam’s razor : how many / which parameters do we need for a sufficient
forecasting”? The answer will drive developments in our physical understanding of flare triggering

‘ ESWW13 M. K. Georgoulis & R. Qahwaji Oostende, November 18, 2016
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CONCLUSIONS

* Consensus that reliable, automated solar flare prediction should be an asset of our SWE forecasting efforts

* (Can flares be predicted, however?
* Quite likely, major flare prediction will remain probabilistic in the future

+ But s this due to the nature of the problem, or due to lack of crucial information or a flawed approach?

* How far along we can go remains TBS — the goal of various flare forecasting efforts is to bring
probabilistic flare prediction as close as possible to a binary (YES / NO one)

* Customized, but always unbiased, validation : its importance cannot be stressed enough

* Multivariate forecasting, enabled by machine-learning and other methods (i.e., PCA, DA) seems to be the
norm for future services — we can do it nowadays, can't we?

*» However, we need to raise Occam’s razor : how many / which parameters do we need for a sufficient
forecasting”? The answer will drive developments in our physical understanding of flare triggering

Diverse expertise and ways of thinking are generally needed

@ ESWW13 M. K. Georgoulis & R. Qahwaji Oostende, November 18, 2016
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All these issues and challenges referring to flare prediction ...




All these issues and challenges referring to flare prediction ...

... we haven't even touched CME and SEP prediction yet!




BACKUP SLIDES



