

Celebrating 50 years

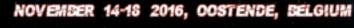
COMPARING DIFFERENT SOLAR FLARE PREDICTION METHODS

Where are we, and how far can we go?

Manolis K. Georgoulis¹ & Rami Qahwaji²

1 RCAAM of the Academy of Athens, Greece 2 Bradford University, United Kingdom

13TH EUROPEAN SPACE WEATHER WEEK



Oostende, Belgium, Nov 14 - 18, 2016



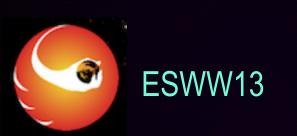
OUTLINE

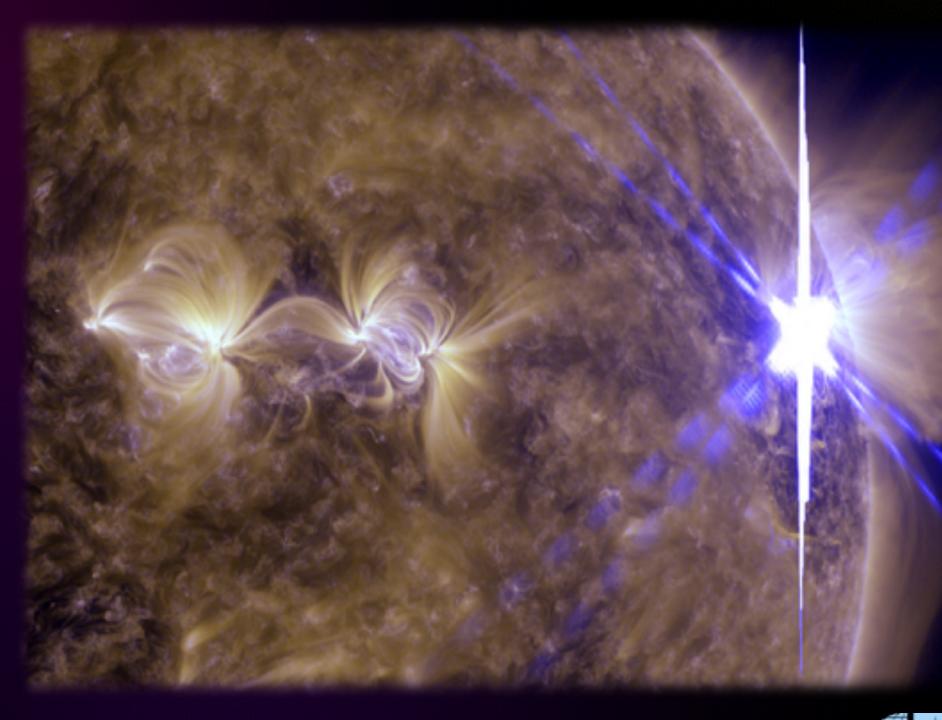
★ Why do we need flare prediction?

- ★ The nature of flare occurrence are flares random?
- ★ Can flares be predicted? different methods
- ***** Recent trends in solar flare prediction
- **★** Validation : process and intrinsics
- * From a method to an operational forecasting service
- ★ Conclusion

M. K. Georgoulis & R. Qahwaji

WHY PREDICT SOLAR FLARES?





WHY PREDICT SOLAR FLARES? arrival of "hard" solar

 $(X-, \gamma)$ -ray photons t_0 + 8 min to

flare

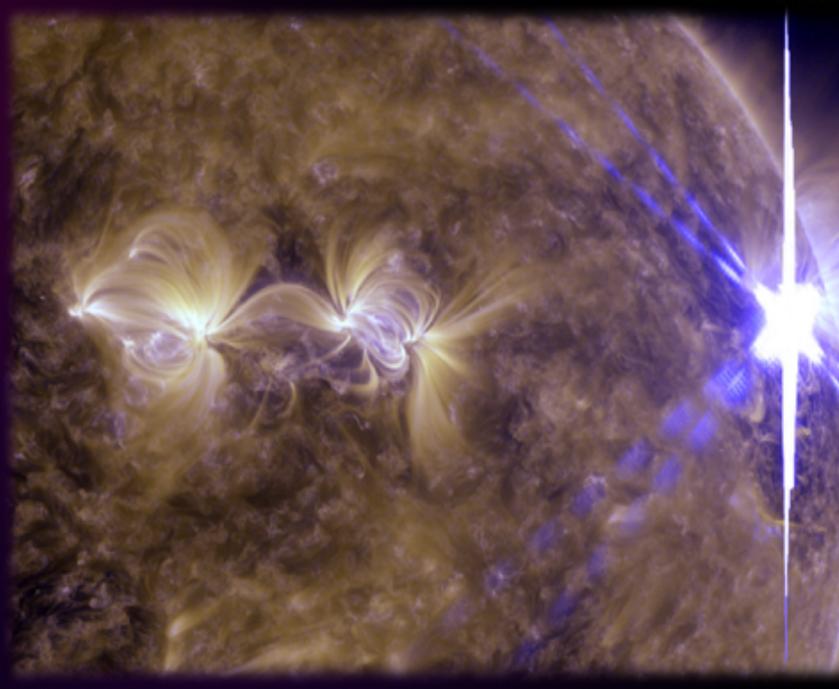
arrival of first flareaccelerated particles

arrival of CME

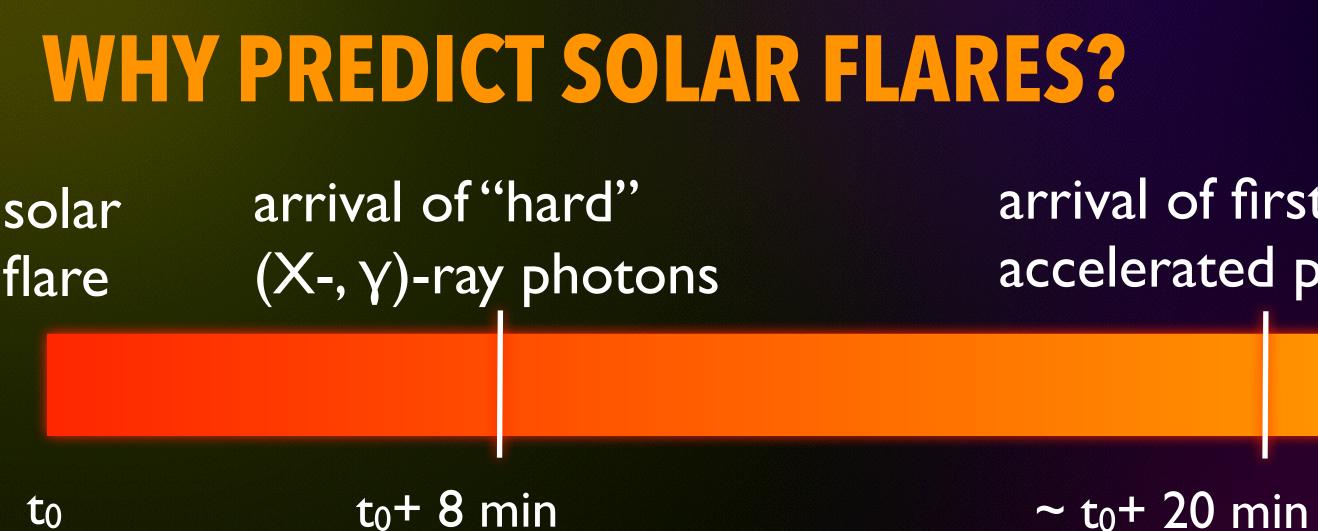
arrival of CME-shockaccelerated particles

~ t₀+ 20 min

t_0 + 2-4 days



M. K. Georgoulis & R. Qahwaji



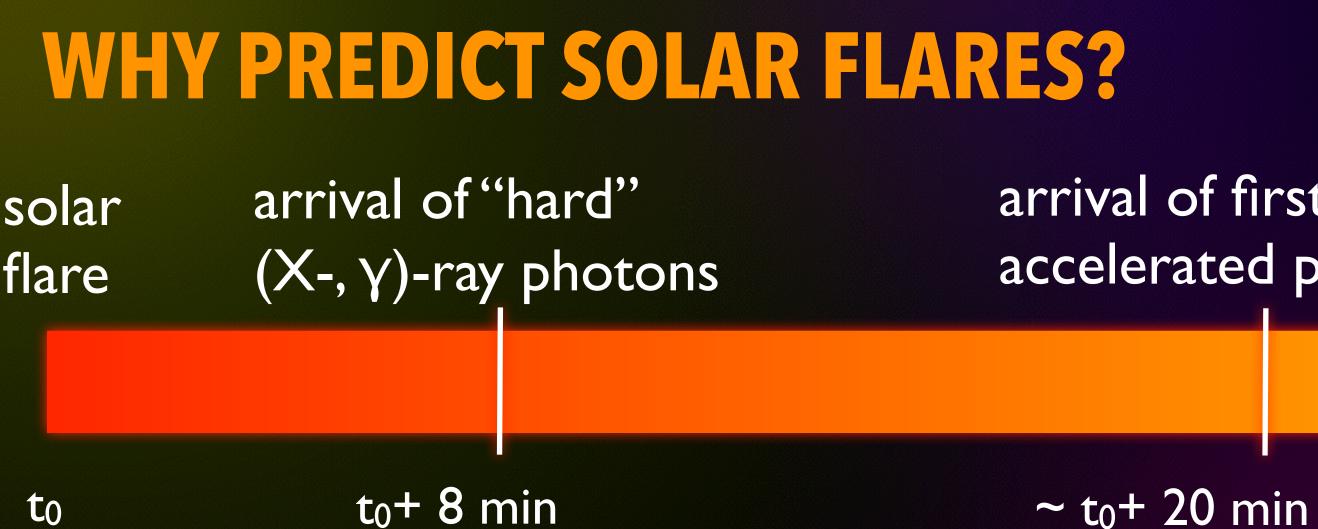
Hard flare photons and non-thermal particulate (mostly protons >10 MeV) affect humans beyond LEO and on solar system bodies lacking an atmosphere. Damages in space-based electronics, radio blackouts, etc., can occur as a result of flares

arrival of first flareaccelerated particles

arrival of CME-shockaccelerated particles

Oostende, November 18, 2016

M. K. Georgoulis & R. Qahwaji



Hard flare photons and non-thermal particulate (mostly protons >10 MeV) affect humans beyond LEO and on solar system bodies lacking an atmosphere. Damages in space-based electronics, radio blackouts, etc., can occur as a result of flares

No early warning time for flare photons slim window for particulate in worst case!

arrival of first flareaccelerated particles

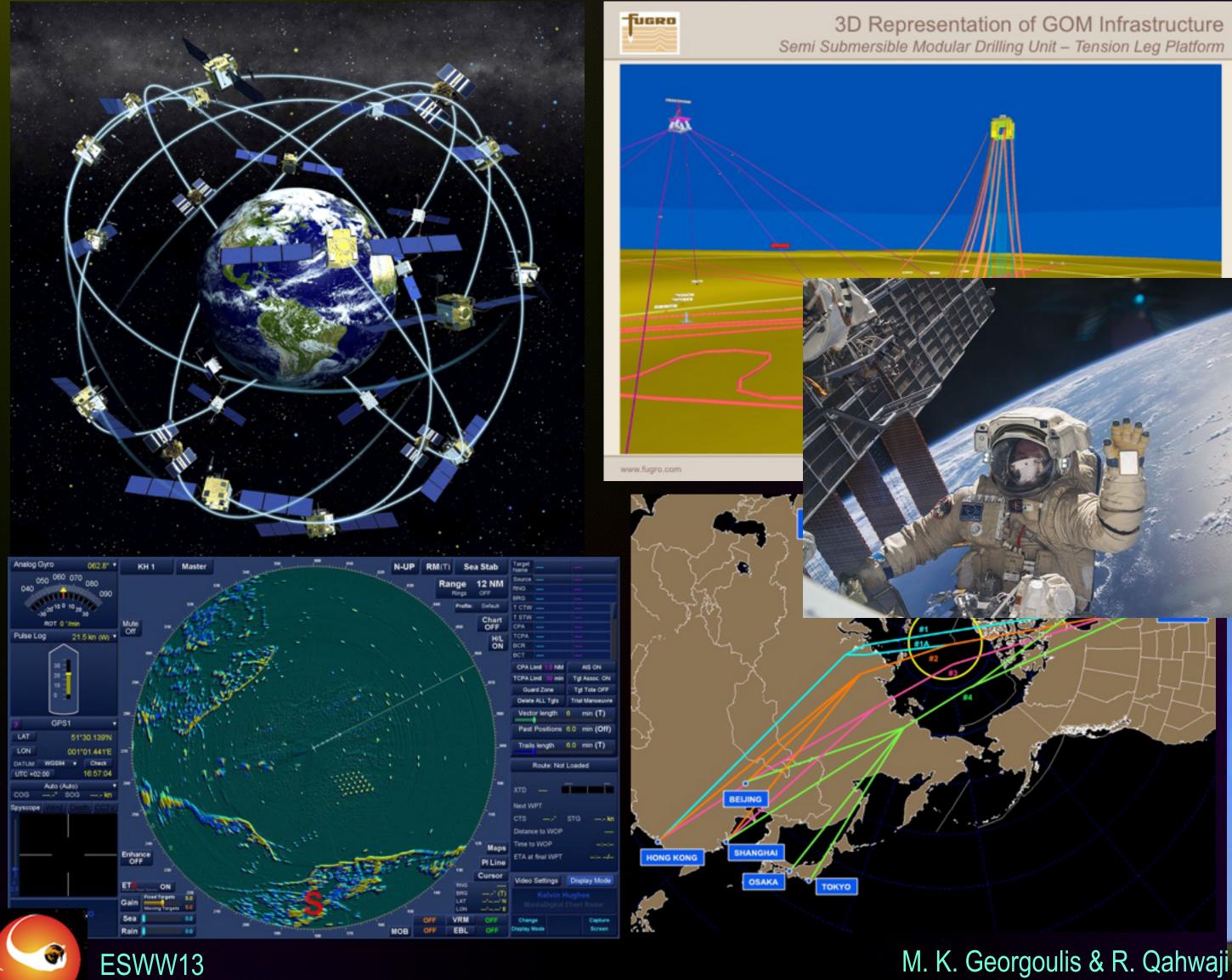
arrival of CME-shockaccelerated particles

Oostende, November 18, 2016

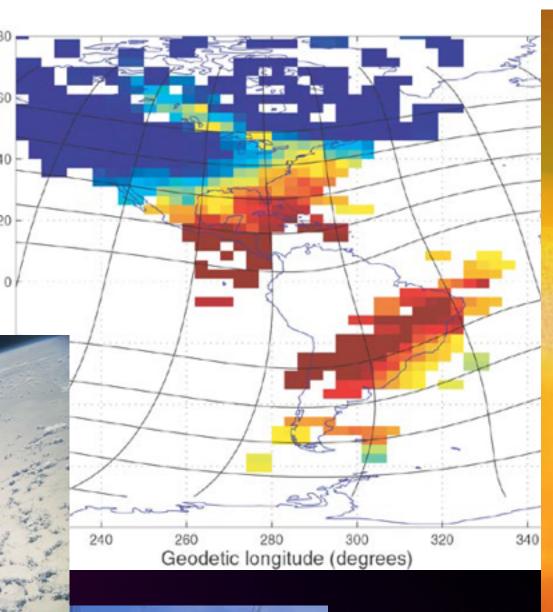
M. K. Georgoulis & R. Qahwaji

t_0 + 2-4 days

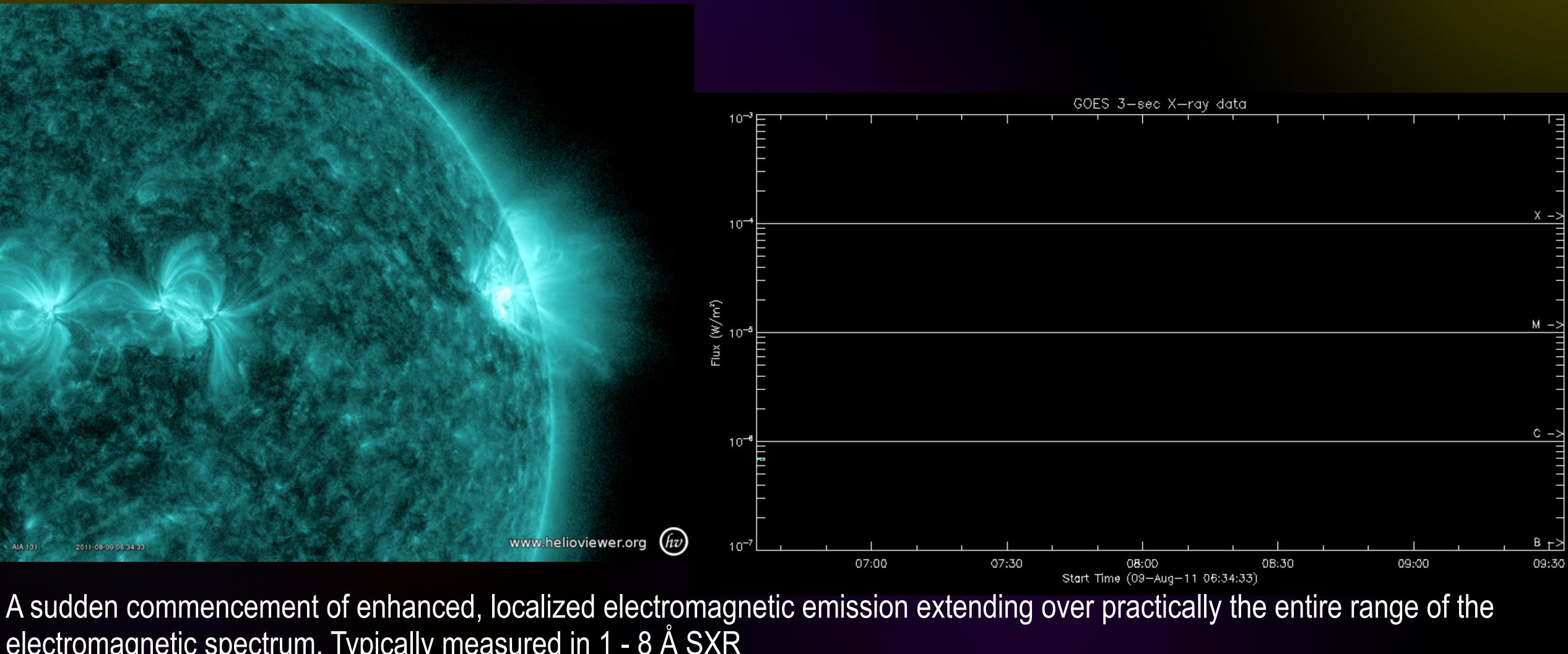
MAJOR FLARE REPERCUSSIONS: EVERYTHING UNDER THE SUN



deg



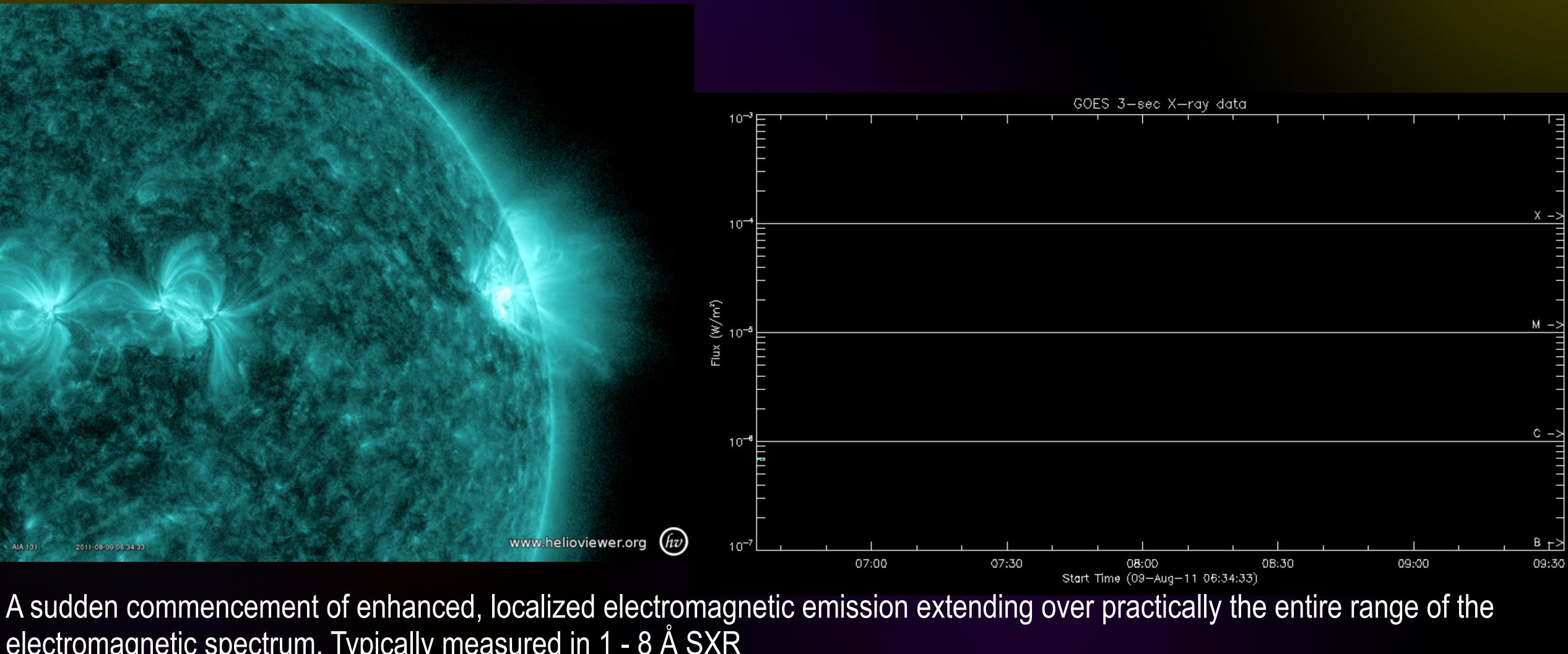
A PHENOMENOLOGY DEFINITION ...



electromagnetic spectrum. Typically measured in 1 - 8 Å SXR

M. K. Georgoulis & R. Qahwaji

A PHENOMENOLOGY DEFINITION ...

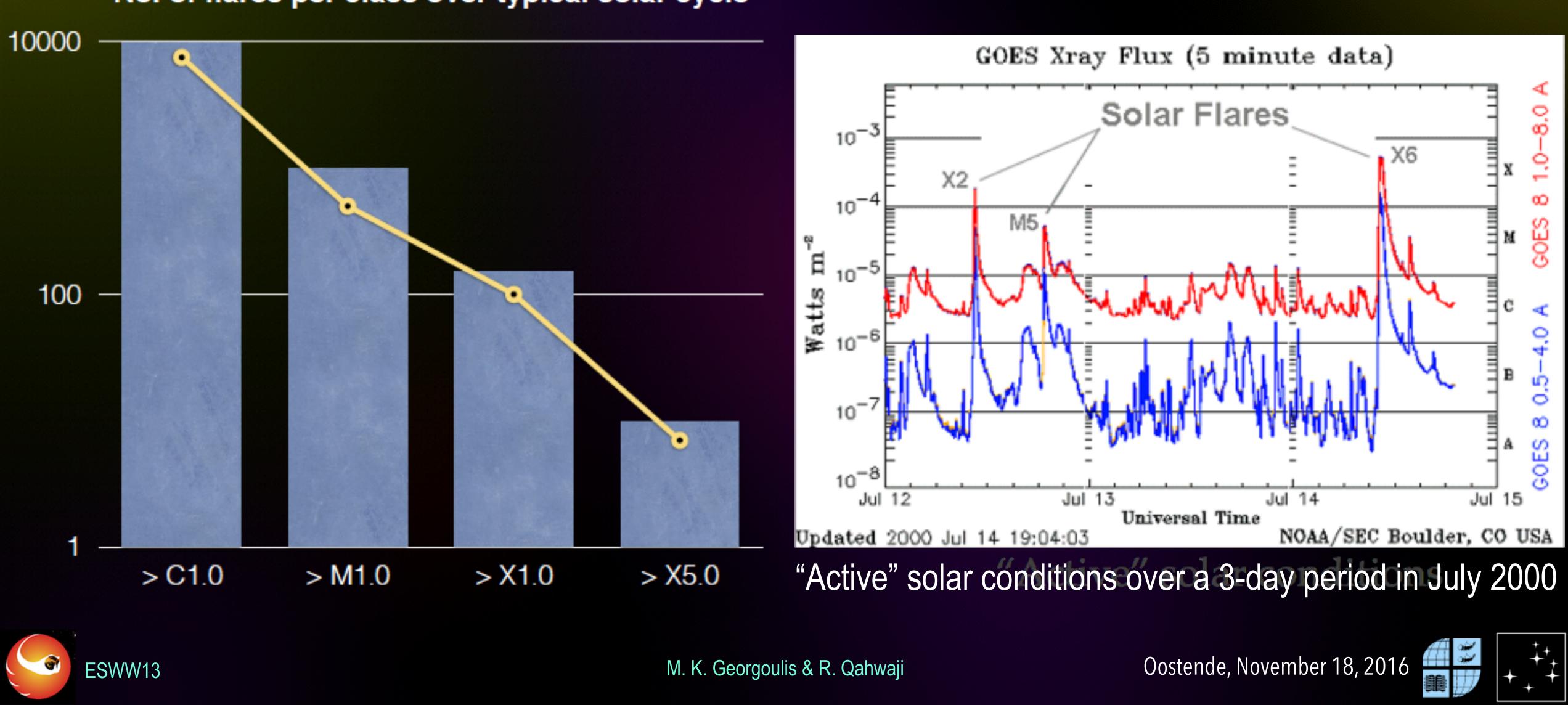


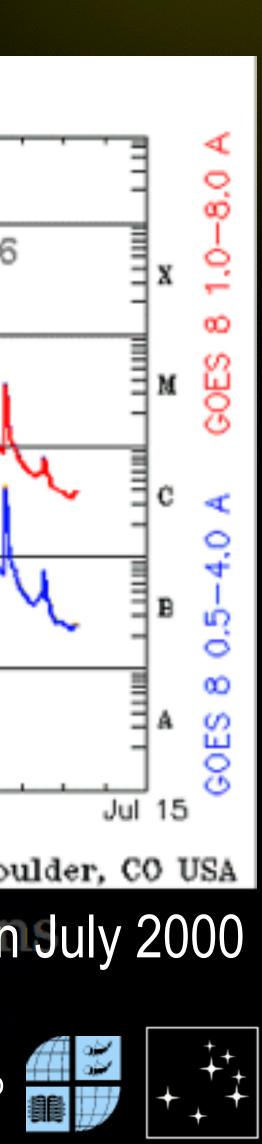
electromagnetic spectrum. Typically measured in 1 - 8 Å SXR

M. K. Georgoulis & R. Qahwaji

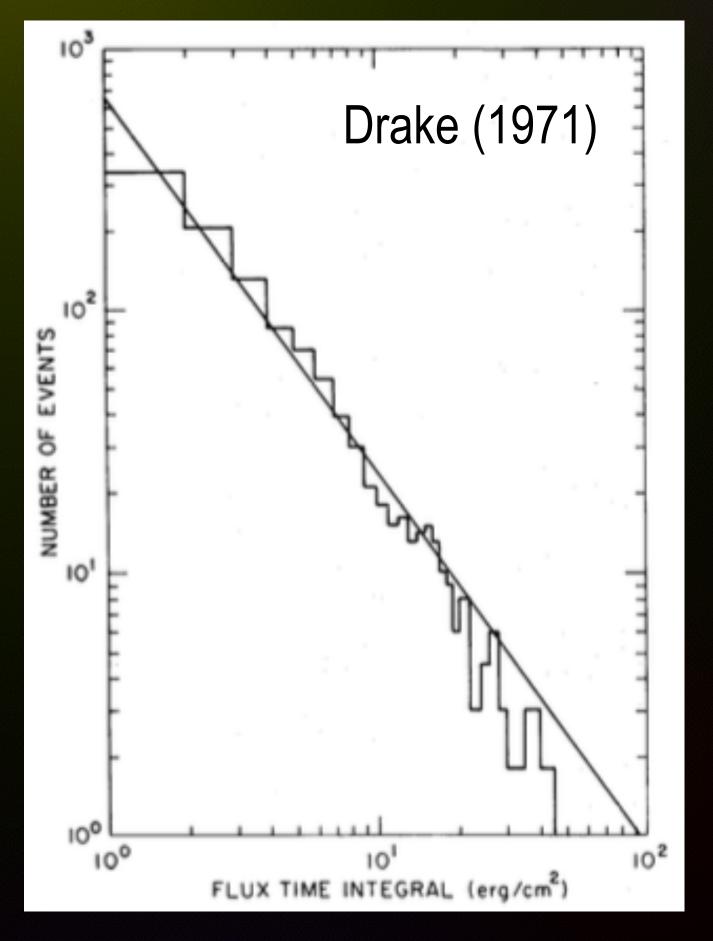
... AND STATISTICAL BEHAVIOR

No. of flares per class over typical solar cycle





NATURE OF FLARE OCCURRENCE



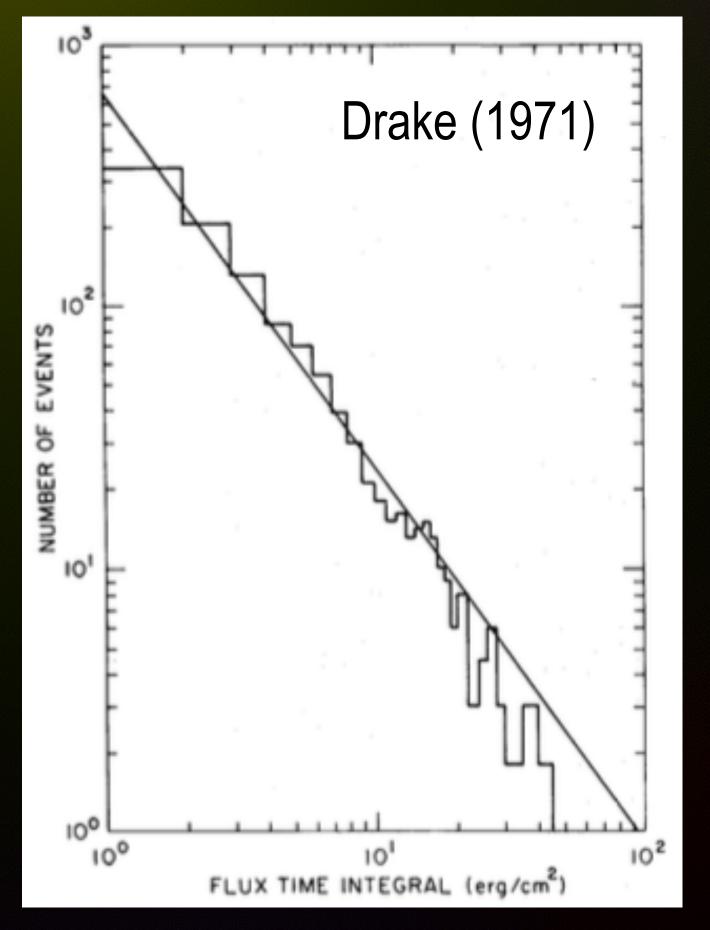
Flare occurrence number vs. integrated photon flux

ESWW13

-

M. K. Georgoulis & R. Qahwaji

NATURE OF FLARE OCCURRENCE



Flare occurrence number vs. integrated photon flux

Flares are (Rosner & Vaiana 1978):

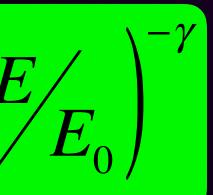
- Stochastic relaxation (storage and release) processes
- Physically uncoupled / independent
- Brief, comparing to intermediate times between flares

$$P(t) = \overline{v}e^{\overline{v}}$$

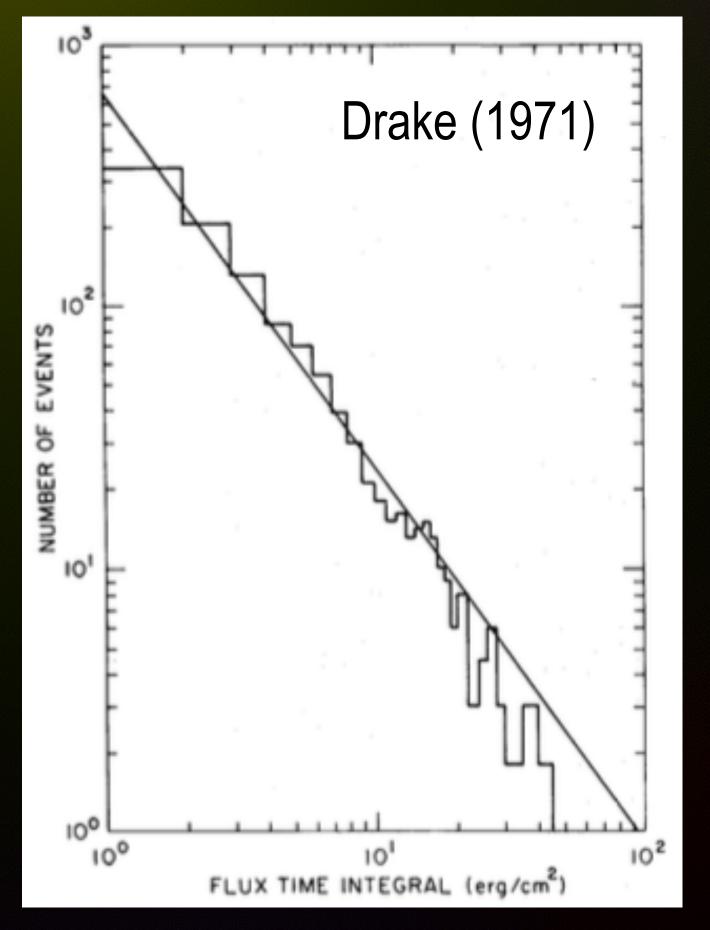
Leading to a power-law occurrence frequency for flare energies

M. K. Georgoulis & R. Qahwaji

 $-\overline{v}t$



NATURE OF FLARE OCCURRENCE



Flare occurrence number vs. integrated photon flux

Flares are (Rosner & Vaiana 1978):

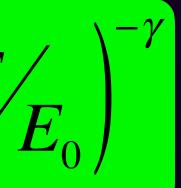
- Stochastic relaxation (storage and release) processes
- Physically uncoupled / independent
- Brief, comparing to intermediate times between flares

$$P(t) = \overline{v}e^{\overline{v}}$$

Leading to a power-law occurrence frequency for flare energies

M. K. Georgoulis & R. Qahwaji

 $-\overline{v}t$



Power-law distribution of flare size later attributed to the concept of selforganized criticality (1990s)

A RATHER GRAPHIC EXAMPLE OF MARGINAL STABILITY

Credit: Aaron Mak - YouTube

M. K. Georgoulis & R. Qahwaji

A RATHER GRAPHIC EXAMPLE OF MARGINAL STABILITY

Credit: Aaron Mak - YouTube

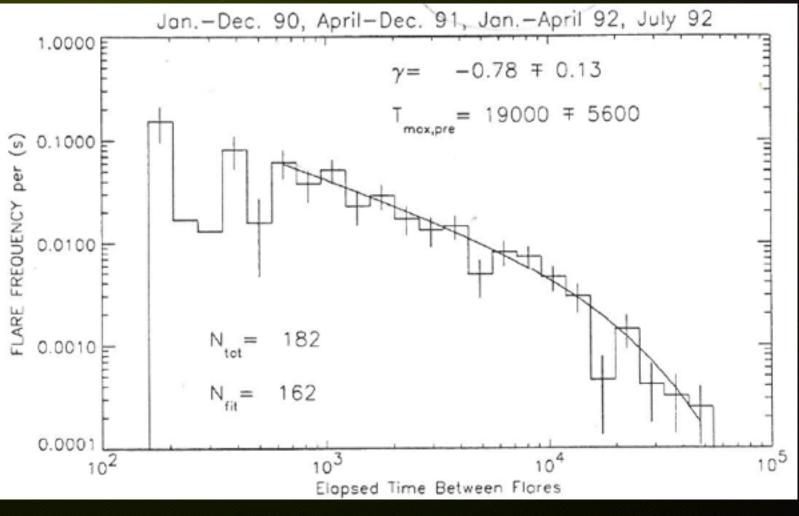
M. K. Georgoulis & R. Qahwaji

HOWEVER, ARE FLARES RANDOM? - DISTRIBUTION OF WAITING TIMES

ESWW13

M. K. Georgoulis & R. Qahwaji

HOWEVER, ARE FLARES RANDOM? - DISTRIBUTION OF WAITING

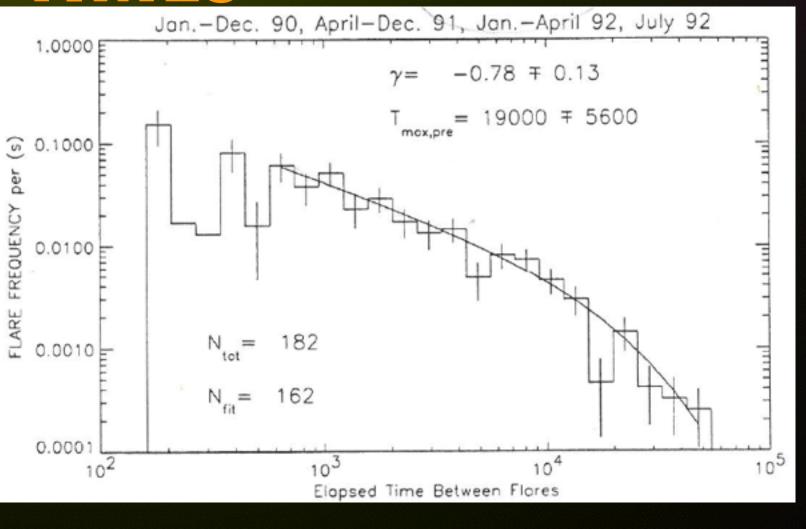


Crosby, PhD Thesis (1996)

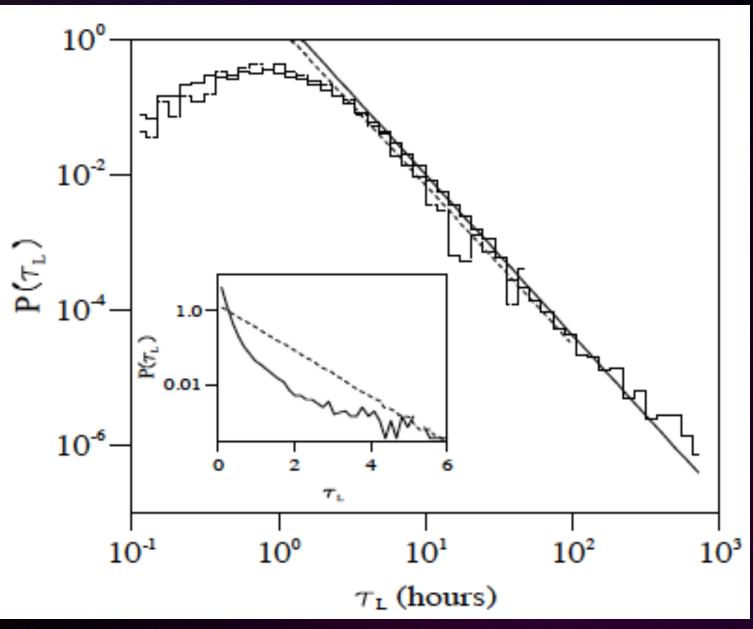
Exponential law of waiting times: a totally random, memoryless flare occurrence along the classical selforganized criticality concept

M. K. Georgoulis & R. Qahwaji

HOWEVER, ARE FLARES RANDOM? - DISTRIBUTION OF WAITING



Exponential law of waiting times: a totally random, memoryless flare occurrence along the classical selforganized criticality concept

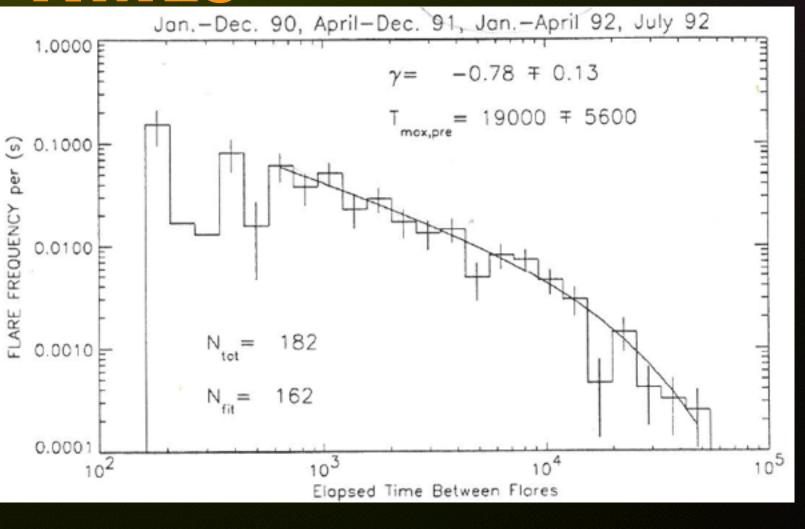


Bofetta et al., (1999)

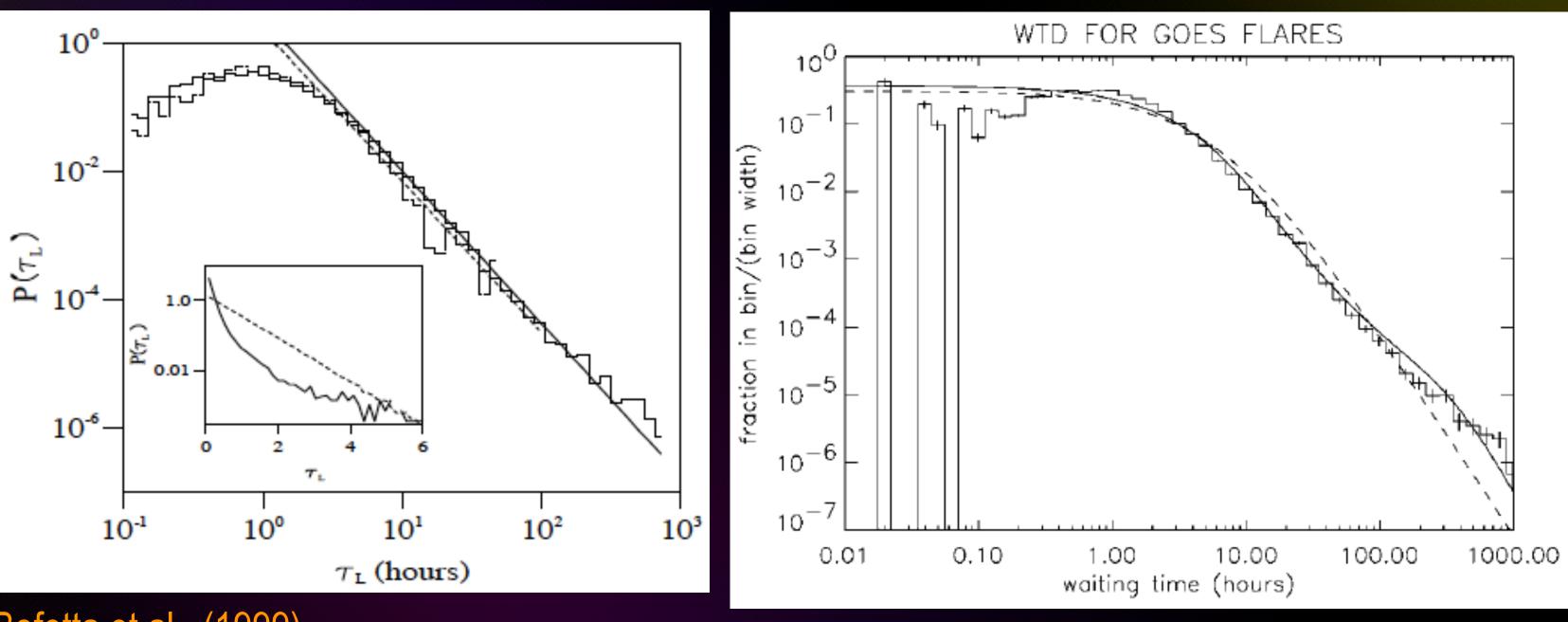
Robust power-law of waiting times: a system perfectly keeping a memory in giving flares

M. K. Georgoulis & R. Qahwaji

HOWEVER, ARE FLARES RANDOM? - DISTRIBUTION OF WAITING



Exponential law of waiting times: a totally random, memoryless flare occurrence along the classical selforganized criticality concept



Bofetta et al., (1999)

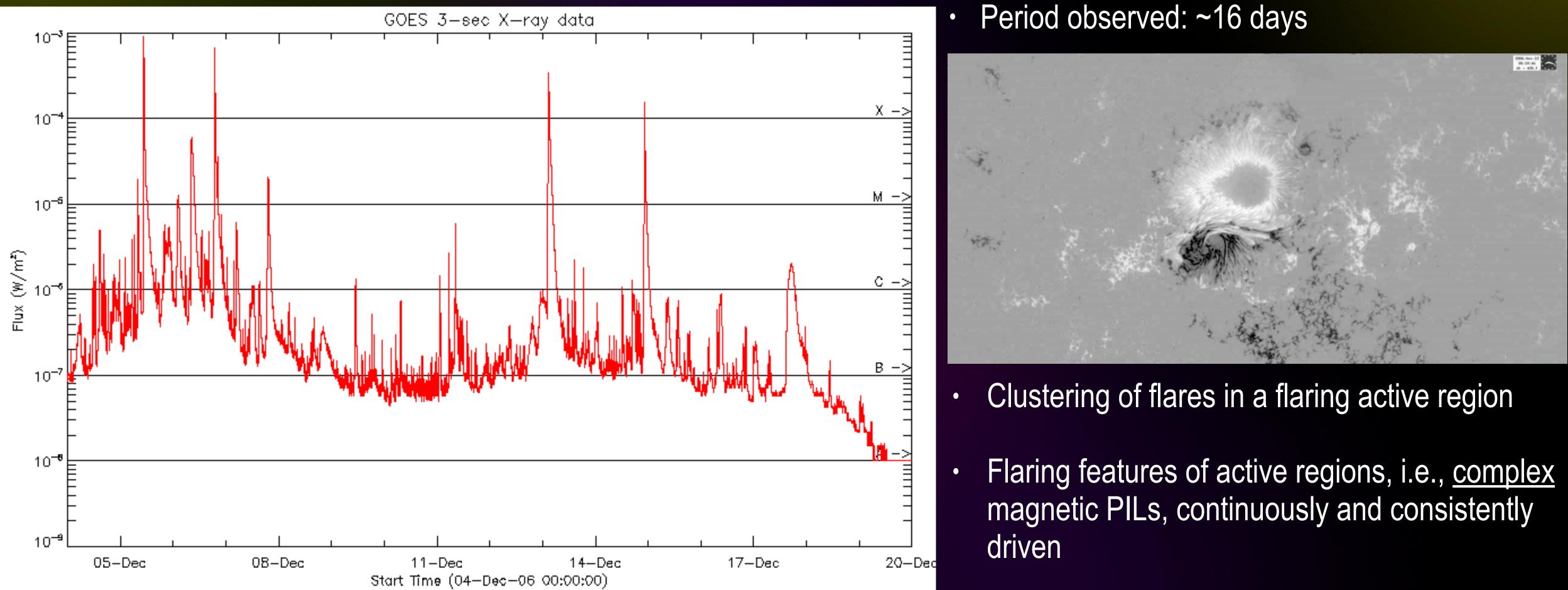
Robust power-law of waiting times: a system perfectly keeping a memory in giving flares

Wheatland (2000)

Time-dependent Poisson scaling in waiting times: some memory kept, with stochasticity demonstrated in an exponential distribution of different flaring rates

M. K. Georgoulis & R. Qahwaji

A MIX OF STOCHASTICITY AND MEMORY



Response of NOAA AR 10930 over a two-week period in Dec 2006

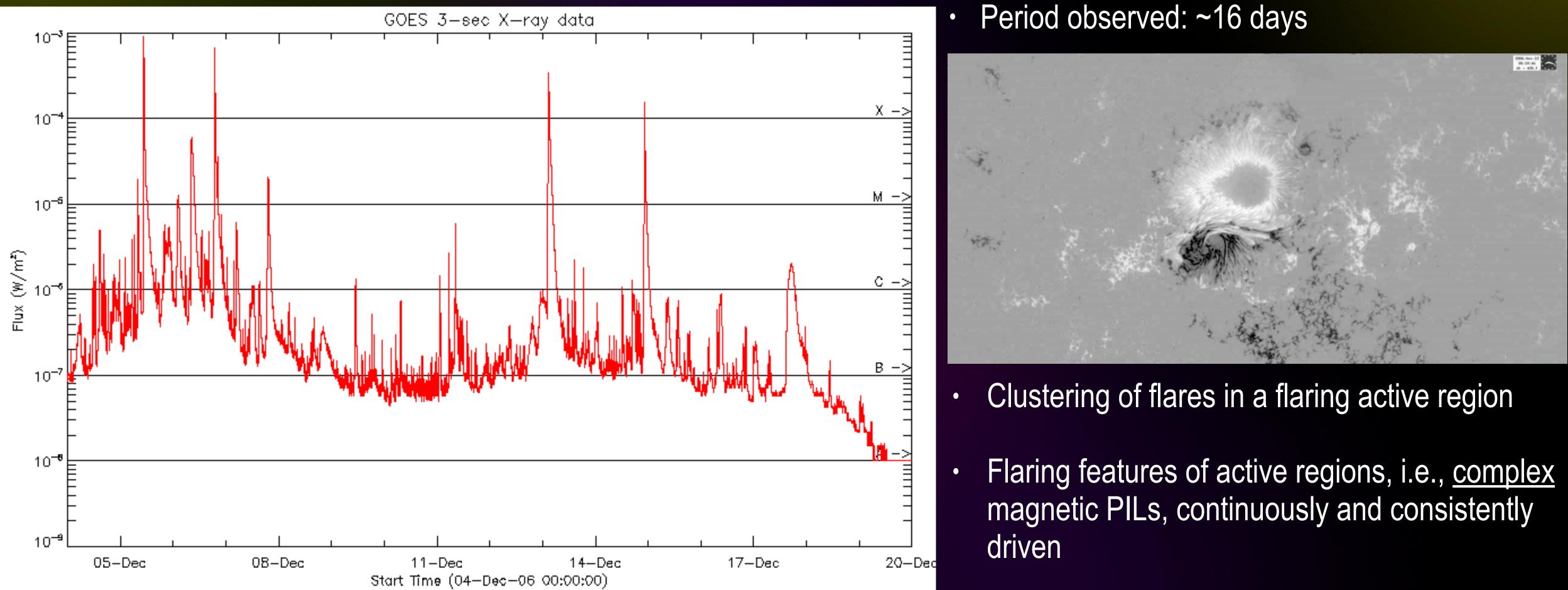
 \bullet

M. K. Georgoulis & R. Qahwaji

NOAAAR 10930

- Typical situation of a pink-noise dynamical response timeseries

A MIX OF STOCHASTICITY AND MEMORY



Response of NOAA AR 10930 over a two-week period in Dec 2006

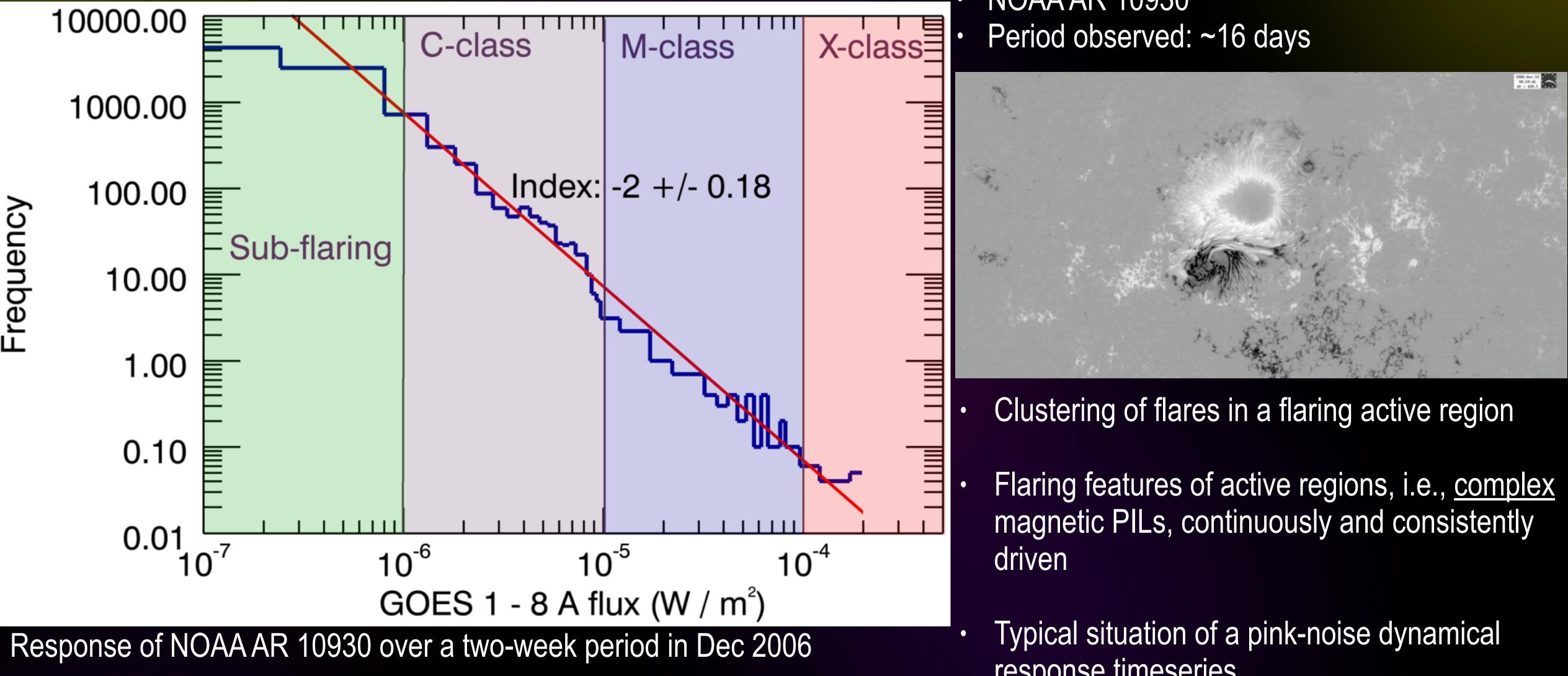
 \bullet

M. K. Georgoulis & R. Qahwaji

NOAAAR 10930

- Typical situation of a pink-noise dynamical response timeseries

A MIX OF STOCHASTICITY AND MEMORY



M. K. Georgoulis & R. Qahwaji

NOAA AR 10930

- response timeseries

QUALITATIVE COMPLEXITY CLASSIFICATION

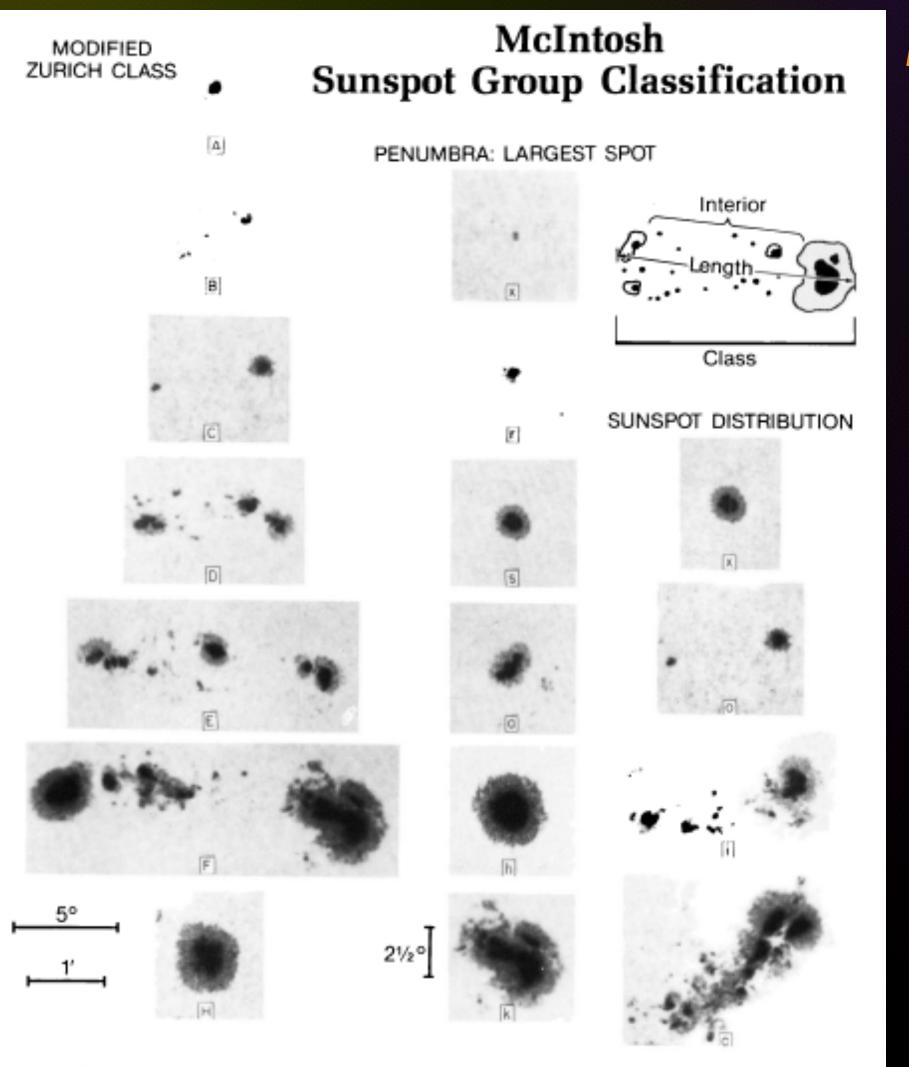


Fig. 1. The 3-component McIntosh classification, with examples of each category.

McIntosh (1990)

Mount Wilson classification

alpha: A unipolar sunspot group.

beta: A sunspot group having both positive and negative magnetic polarities (bipolar), with a simple and distinct division between the polarities.

gamma: A complex active region in which the positive and negative polarities are so irregularly distributed as to prevent classification as a bipolar group.

beta-gamma: A sunspot group that is bipolar but which is sufficiently complex that no single, continuous line can be drawn between spots of opposite polarities.

delta: A qualifier to magnetic classes (see below) indicating that umbrae separated by less than 2 degrees within one penumbra have opposite polarity.

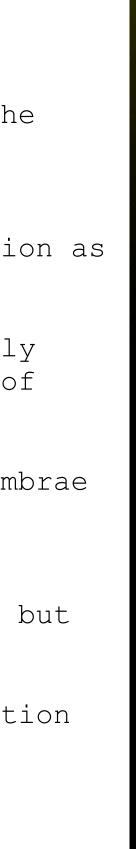
beta-delta: A sunspot group of general beta magnetic classification but containing one (or more) delta spot(s).

beta-gamma-delta: A sunspot group of beta-gamma magnetic classification but containing one (or more) delta spot(s).

gamma-delta: A sunspot group of gamma magnetic classification but containing one (or more) delta spot(s).

Source: <u>spaceweather.com</u>

M. K. Georgoulis & R. Qahwaji



QUALITATIVE COMPLEXITY CLASSIFICATION

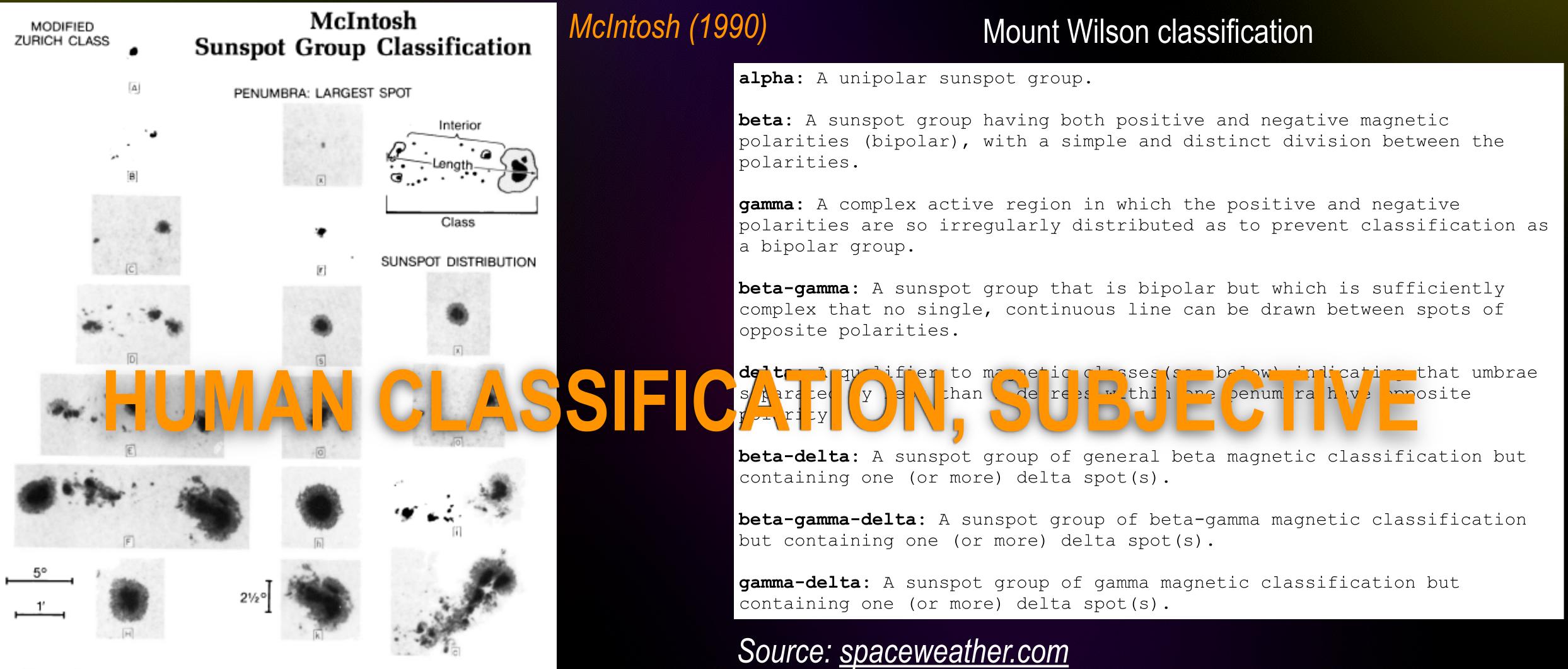
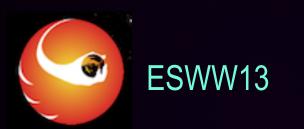


Fig. 1. The 3-component McIntosh classification, with examples of each category.

M. K. Georgoulis & R. Qahwaji

QUANTITATIVE COMPLEXITY CLASSIFICATION

Numerous methods over the past 20 years. An effort to categorize them results in the following (Georgoulis, 2012):



QUANTITATIVE COMPLEXITY CLASSIFICATION

- Monoscale / multiscale methods
- Morphological methods
- Statistical methods (on historical & archived data)
- Machine-learning, combinatorial, & assimilation methods
- Analytical methods
- Local helioseismology methods
- Other (slightly exotic) methods

Numerous methods over the past 20 years. An effort to categorize them results in the following (Georgoulis, 2012):

QUANTITATIVE COMPLEXITY CLASSIFICATION

- Monoscale / multiscale methods
- Morphological methods
- Statistical methods (on historical & archived data)
- Machine-learning, combinatorial, & assimilation methods
- Analytical methods

ESWW13

- Local helioseismology methods
- Other (slightly exotic) methods

Abramenko et al. (2002, 2003); McAteer at al. (2005); Georgoulis (2005, 2012); Uritsky et al. (2007, 2013); Hewett et al. (2008); Conlon et al. (2010); Kestener et al. (2010), McAteer (2015)

Falconer et al. (2001, 2002, 2003, 2008, 2009, 2011); Georrgoulis & Rust (2007); Schrijver (2007); Mason & Hoeksema (2010); Leka & Barnes (2003a; b); Cabnfield et al. (1999); Barnes & Leka (2008), Korsos et al. (2015)

Wheatland (2001); Moon et al. (2001); Gallagher et al. (2002); Wheatland (2004, 2005a, b)

Belanger et al. (2007); Qahwaji & Colak (2007); Colak & Qahwaji (2008, 2009); Qahwaji et al. (2008); Al-Omari et al. (2010); Yu et al. (2009; 2010a, b); Huang et al. (2010); Bobra & Couvidat (2014); Bobra & Ilonidis (2015); Boucheron et al., (2015); Nishizuka et al., (2016)

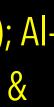
Wheatland & Glukhov (1998); Wheatland (2008)

Reinard et al. (2010); Komm et al. (2011), etc.

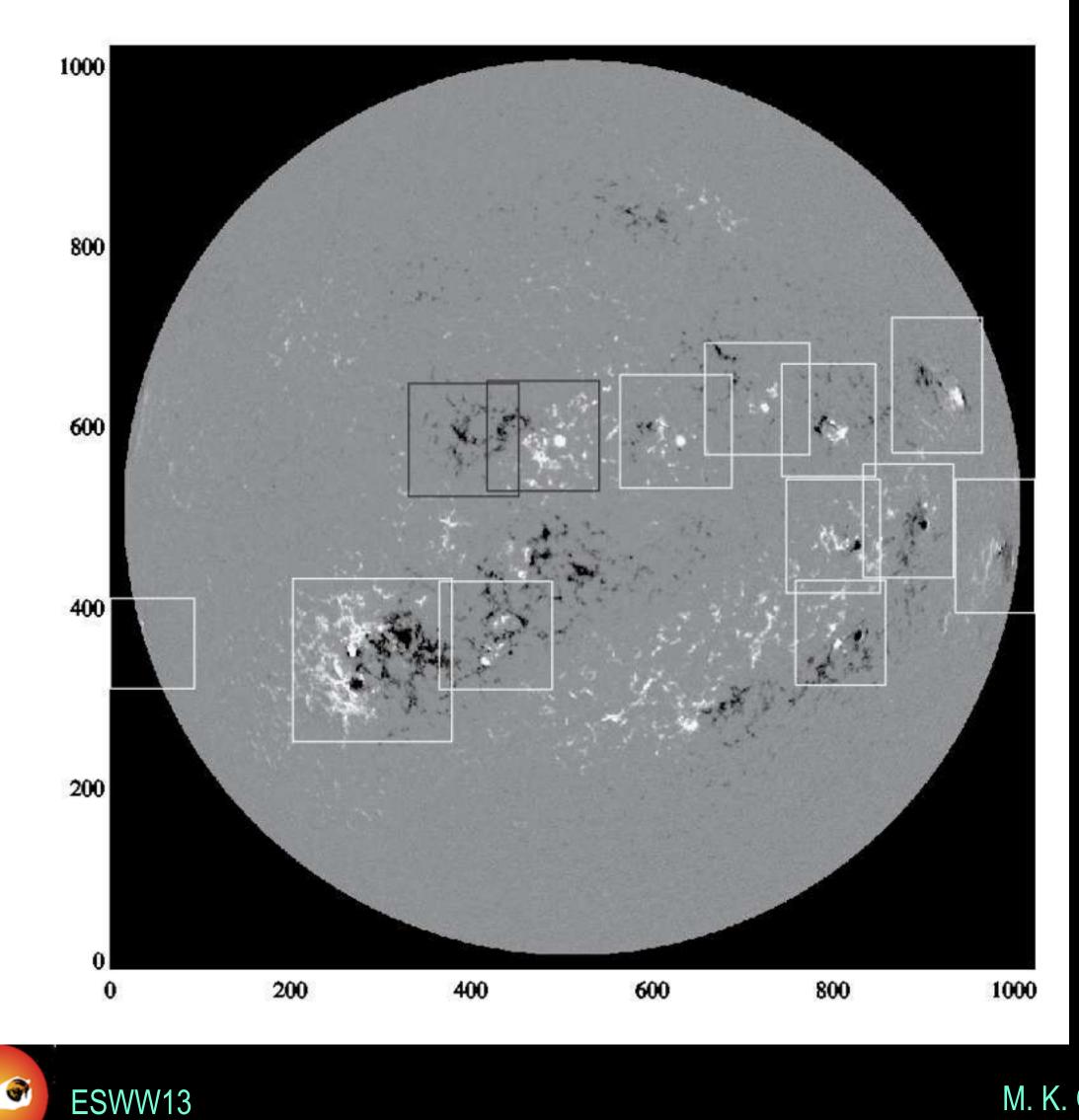
Jenkins & Fischbach (2009); Javorsek et al. (2012); Strugarek & Charbonneau (2014)

M. K. Georgoulis & R. Qahwaji

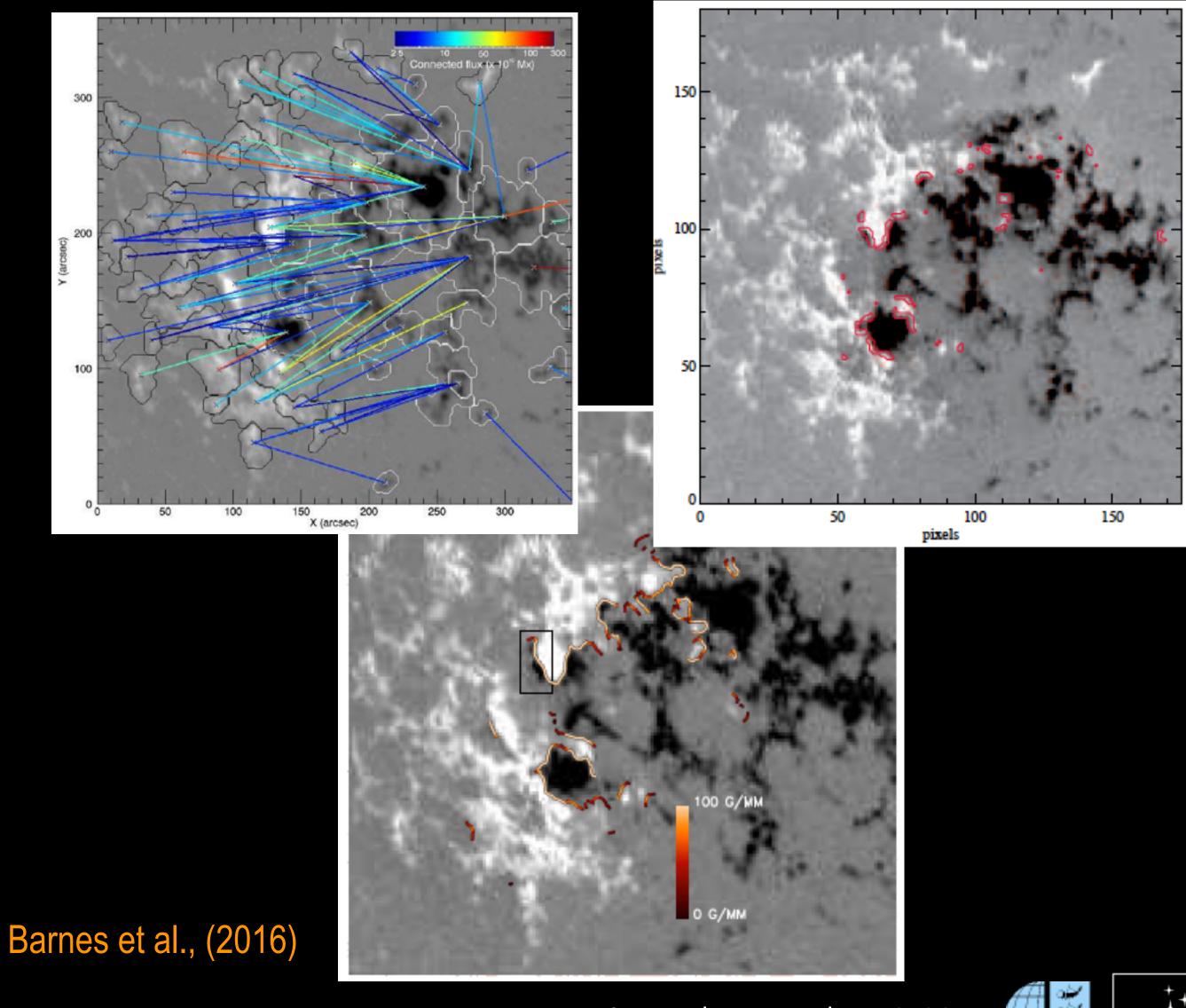
Numerous methods over the past 20 years. An effort to categorize them results in the following (*Georgoulis, 2012*):



ANALYSIS OF PHOTOSPHERIC ACTIVE-REGION MAGNETOGRAMS



M. K. Georgoulis & R. Qahwaji

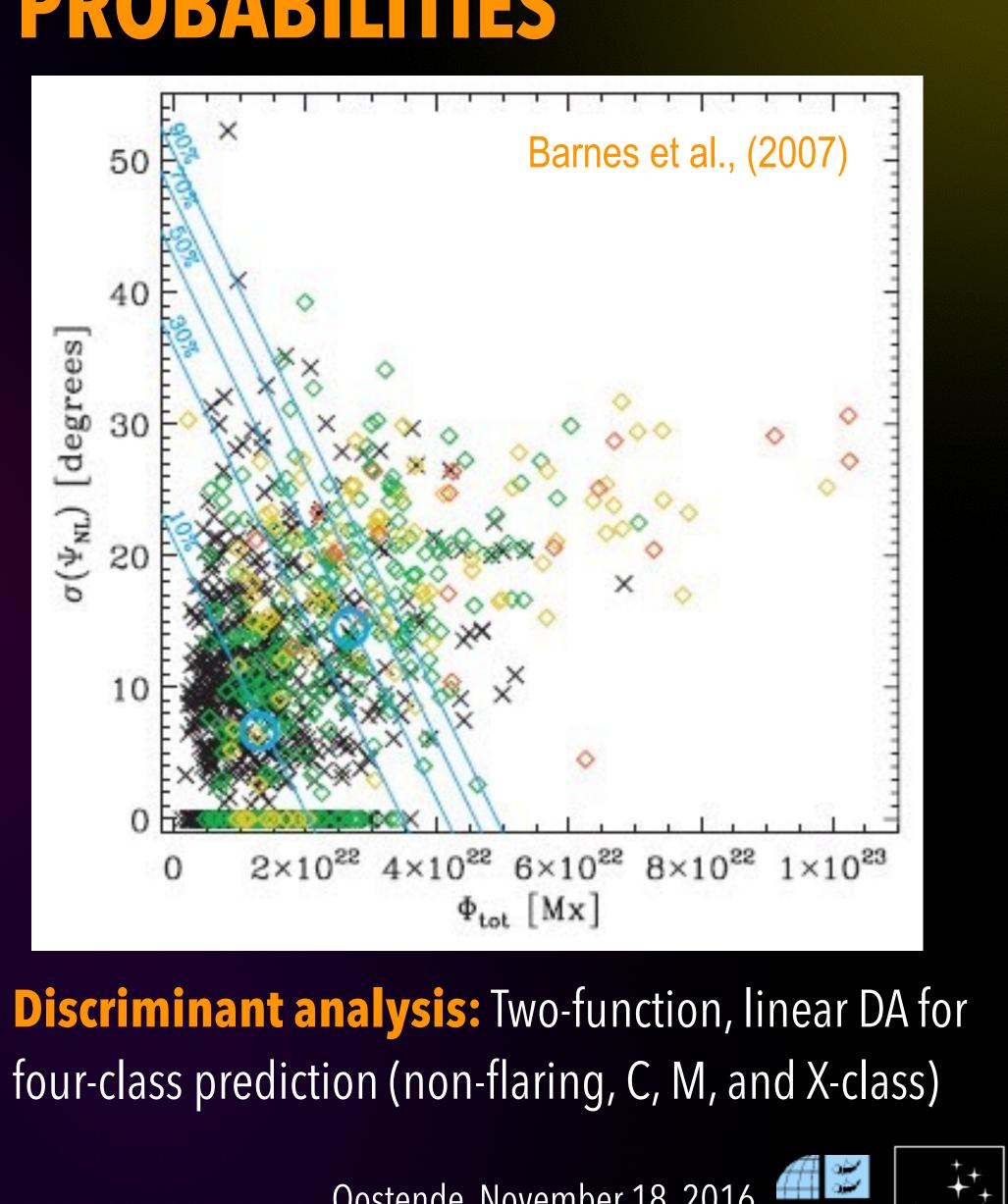


PROPERTIES TRANSLATED TO PREDICTIVE PROBABILITIES

Keyword	Description	Formula	F-Score	Selection
TOTUSJH	Total unsigned current helicity	$H_{c_{ m total}} \propto \sum B_z \cdot J_z $	3560	Included
TOTBSQ	Total magnitude of Lorentz force	$F\propto \sum B^2$	3051	Included
TOTPOT	Total photospheric magnetic free energy density	$ ho_{ m tot} \propto \sum \left(oldsymbol{B}^{ m Obs} - oldsymbol{B}^{ m Pot} ight)^2 dA$	2996	Included
TOTUSJZ	Total unsigned vertical current	$J_{z_{\text{total}}} = \sum J_z dA$	2733	Included
ABSNJZH	Absolute value of the net current helicity	$H_{c_{ m abs}} \propto \left \sum B_z \cdot J_z \right $	2618	Included
SAVNCPP	Sum of the modulus of the net current per polarity	$J_{z_{sum}} \propto \left \sum_{z}^{B_z^+} J_z dA \right + \left \sum_{z}^{B_z^-} J_z dA \right $	2448	Included
USFLUX	Total unsigned flux	$\Phi = \sum B_z dA$	2437	Included
AREA_ACR	Area of strong field pixels in the active region	Area = \sum Pixels	2047	Included
TOTFZ	Sum of z-component of Lorentz force	$F_z \propto \sum (B_x^2 + B_y^2 - B_z^2) dA$	1371	Included
MEANPOT	Mean photospheric magnetic free energy	$\overline{ ho} \propto rac{1}{N} \sum \left(oldsymbol{B}^{ ext{Obs}} - oldsymbol{B}^{ ext{Pot}} ight)^2$	1064	Included
R_VALUE	Sum of flux near polarity inversion line	$\Phi = \sum B_{LoS} dA$ within R mask	1057	Included
EPSZ	Sum of z-component of normalized Lorentz force	$\delta F_z \propto \frac{\sum (B_x^2 + B_y^2 - B_z^2)}{\sum B^2}$	864.1	Included
shrgt45	Fraction of Area with shear $> 45^{\circ}$	Area with shear $> 45^{\circ}$ / total area	740.8	Included
MEANSHR	Mean shear angle	$\overline{\Gamma} = \frac{1}{N} \sum \arccos\left(\frac{B^{\text{Obs}} \cdot B^{\text{Pot}}}{ B^{\text{Obs}} B^{\text{Pot}} }\right)$	727.9	Discarded
MEANGAM	Mean angle of field from radial	$\overline{\gamma} = \frac{1}{N} \sum \arctan\left(\frac{B_h}{B_z}\right)$	573.3	Discarded
MEANGBT	Mean gradient of total field	$\overline{ \nabla B_{\text{tot}} } = \frac{1}{N} \sum \sqrt{\left(\frac{\partial B}{\partial x}\right)^2 + \left(\frac{\partial B}{\partial y}\right)^2}$	192.3	Discarded
MEANGBZ	Mean gradient of vertical field	$\overline{ \nabla B_z } = \frac{1}{N} \sum \sqrt{\left(\frac{\partial B_z}{\partial x}\right)^2 + \left(\frac{\partial B_z}{\partial y}\right)^2}$	88.40	Discarded
MEANGBH	Mean gradient of horizontal field	$\overline{ \nabla B_h } = \frac{1}{N} \sum \sqrt{\left(\frac{\partial B_h}{\partial x}\right)^2 + \left(\frac{\partial B_h}{\partial y}\right)^2}$	79.40	Discarded
MEANJZH	Mean current helicity (B_z contribution)	$\overline{H_c} \propto rac{1}{N} \sum B_z \cdot J_z$	46.73	Discarded
TOTFY	Sum of y-component of Lorentz force	$F_y \propto \sum B_y B_z dA$	28.92	Discarded
MEANJZD	Mean vertical current density	$\overline{J_z} \propto rac{1}{N} \sum \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y} ight)$	17.44	Discarded
MEANALP	Mean characteristic twist parameter, α	$\alpha_{\rm total} \propto rac{\sum J_z \cdot B_z}{\sum B_z^2}$	10.41	Discarded
TOTFX	Sum of x-component of Lorentz force	$F_x \propto -\sum B_x B_z dA$	6.147	Discarded
EPSY	Sum of y-component of normalized Lorentz force	$\delta F_y \propto \frac{-\sum B_y B_z}{\sum B^2}$	0.647	Discarded
EPSX	Sum of x-component of normalized Lorentz force	$\delta F_x \propto \frac{\sum B_x B_z}{\sum B^2}$	0.366	Discarded

Bobra & Couvidat (2014)

ESWW13



M. K. Georgoulis & R. Qahwaji

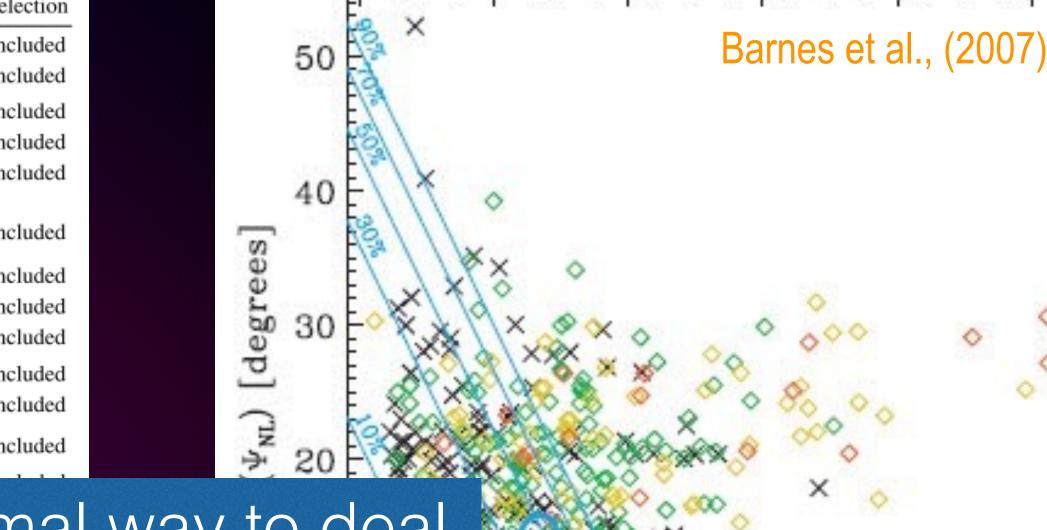
PROPERTIES TRANSLATED TO PREDICTIVE PROBABILITIES

Keyword	Description	Formula	F-Score	Selection
TOTUSJH	Total unsigned current helicity	$H_{c_{ ext{total}}} \propto \sum B_z \cdot J_z $	3560	Included
TOTBSQ	Total magnitude of Lorentz force	$F\propto \sum B^2$	3051	Included
TOTPOT	Total photospheric magnetic free energy density	$ ho_{ m tot} \propto \sum \left({oldsymbol B}^{ m Obs} - {oldsymbol B}^{ m Pot} ight)^2 dA$	2996	Included
TOTUSJZ	Total unsigned vertical current	$J_{z_{\text{total}}} = \sum J_z dA$	2733	Included
ABSNJZH	Absolute value of the net current helicity	$H_{c_{ m abs}} \propto \left \sum B_z \cdot J_z \right $	2618	Included
SAVNCPP	Sum of the modulus of the net current per polarity	$J_{z_{sum}} \propto \left \sum_{z}^{B_z^+} J_z dA \right + \left \sum_{z}^{B_z^-} J_z dA \right $	2448	Included
USFLUX	Total unsigned flux	$\Phi = \sum B_z dA$	2437	Included
AREA_ACR	Area of strong field pixels in the active region	Area = \sum Pixels	2047	Included
TOTFZ	Sum of z-component of Lorentz force	$F_z \propto \sum (B_x^2 + B_y^2 - B_z^2) dA$	1371	Included
MEANPOT	Mean photospheric magnetic free energy	$\overline{ ho} \propto rac{1}{N} \sum \left(oldsymbol{B}^{ ext{Obs}} - oldsymbol{B}^{ ext{Pot}} ight)^2$	1064	Included
R_VALUE	Sum of flux near polarity inversion line	$\Phi = \sum B_{LoS} dA$ within R mask	1057	Included
EPSZ	Sum of z-component of normalized Lorentz force	$\delta F_z \propto \frac{\sum (B_x^2 + B_y^2 - B_z^2)}{\sum B^2}$	864.1	Included
shrgt45	Fraction of Area with shear $> 45^{\circ}$	Area with the first for the first	240.0	I I I I
MEANSHR	Mean shear angle	^{r} = ₩ What is	the on	timal
MEANGAM	Mean angle of field from radial	γ		
MEANGBT	Mean gradient of total field	with all t	this inf	orma
MEANGBZ	Mean gradient of vertical field	$\overline{ \nabla B_z }$ achieve	reliabl	e NF
MEANGBH	Mean gradient of horizontal field	$\overline{ \nabla B_h } = \frac{1}{N - \sqrt{3x}} \sqrt{3x} - \frac{1}{\sqrt{3y}}$	17.40	Distanced
MEANJZH	Mean current helicity (B_z contribution)	$\overline{H_c} \propto rac{1}{N} \sum B_z \cdot J_z$	46.73	Discarded
TOTFY	Sum of y-component of Lorentz force	$F_y \propto \sum B_y B_z dA$	28.92	Discarded
MEANJZD	Mean vertical current density	$\overline{J_z} \propto \frac{1}{N} \sum \left(\frac{\partial B_y}{\partial x} - \frac{\partial B_x}{\partial y} \right)$	17.44	Discarded
MEANALP	Mean characteristic twist parameter, α	$\alpha_{\text{total}} \propto \frac{\sum J_z \cdot B_z}{\sum B_z^2}$	10.41	Discarded
TOTFX	Sum of x-component of Lorentz force	$F_x \propto -\sum B_x B_z dA$	6.147	Discarded
EPSY	Sum of y-component of normalized Lorentz force	$\delta F_y \propto \frac{-\sum B_y B_z}{\sum B^2}$	0.647	Discarded
EPSX	Sum of x-component of normalized Lorentz force	$\delta F_x \propto \frac{\sum B_x B_z}{\sum B^2}$	0.366	Discarded

Bobra & Couvidat (2014)

ESWW13

M. K. Georgoulis & R. Qahwaji



optimal way to deal information and still able NRT forecasts?

0 $2 \times 10^{22} 4 \times 10^{22} 6 \times 10^{22} 8 \times 10^{22} 1 \times 10^{23} \Phi_{tot} [Mx]$

Discriminant analysis: Two-function, linear DA for four-class prediction (non-flaring, C, M, and X-class)

Most (excluding machine-learning) methods use a univariate predictor.

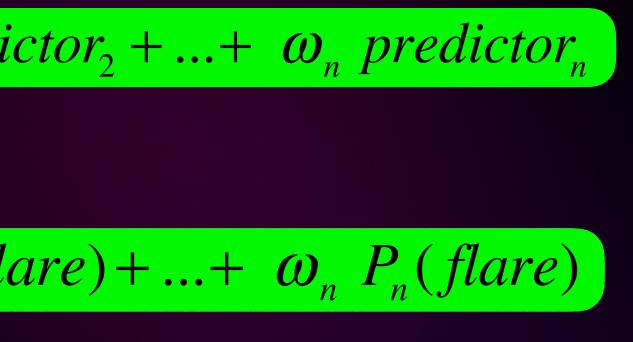
M. K. Georgoulis & R. Qahwaji

- Most (excluding machine-learning) methods use a univariate predictor.
- Multivariate forecasting can also be used in the form of :
 - Synthetic predictors:

predictor = ω_1 predictor + ω_2 predictor + ...+ ω_n predictor

– Ensemble forecasting:

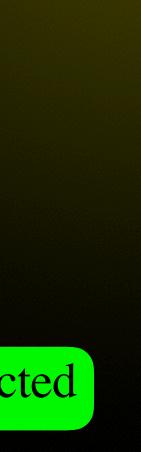
$$P(flare) = \omega_1 P_1(flare) + \omega_2 P_2(flare)$$



 $\boldsymbol{\omega}_1, \boldsymbol{\omega}_2, ..., \boldsymbol{\omega}_n$ unrestricted

 $\sum_{i=1}^{n} \omega_i = 1$

M. K. Georgoulis & R. Qahwaji



- Most (excluding machine-learning) methods use a univariate predictor.
- Multivariate forecasting can also be used in the form of :
 - Synthetic predictors:

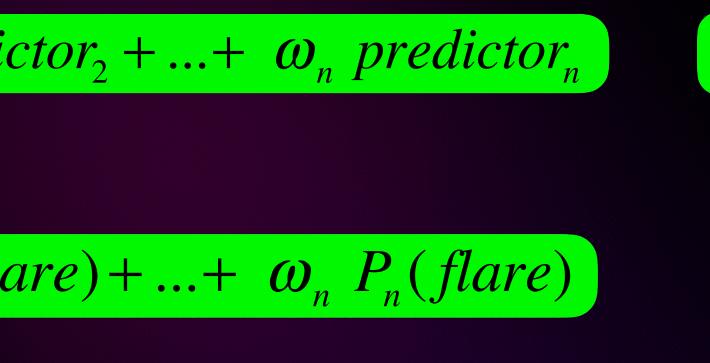
predictor = ω_1 predictor + ω_2 predictor + ...+ ω_n predictor

– Ensemble forecasting:

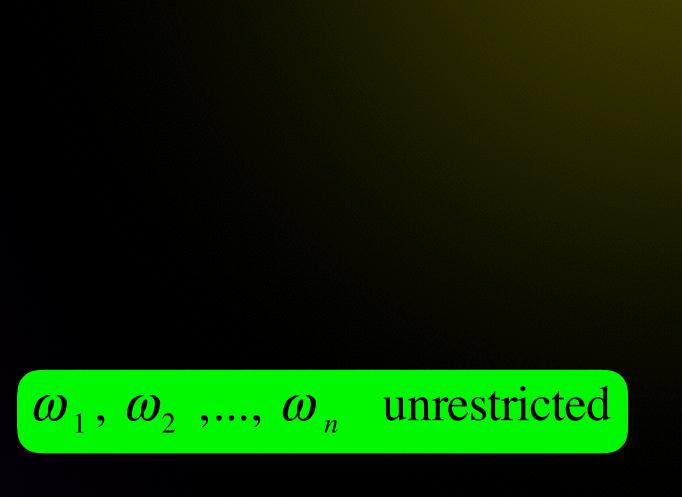
$$P(flare) = \omega_1 P_1(flare) + \omega_2 P_2(flare)$$

Task: find $\omega_1, \omega_2, \ldots, \omega_n$ such that validation results are <u>optimized</u> •

M. K. Georgoulis & R. Qahwaji



 $\sum_{i=1}^{n} \omega_i = 1$



- Most (excluding machine-learning) methods use a univariate predictor.
- Multivariate forecasting can also be used in the form of :
 - Synthetic predictors:

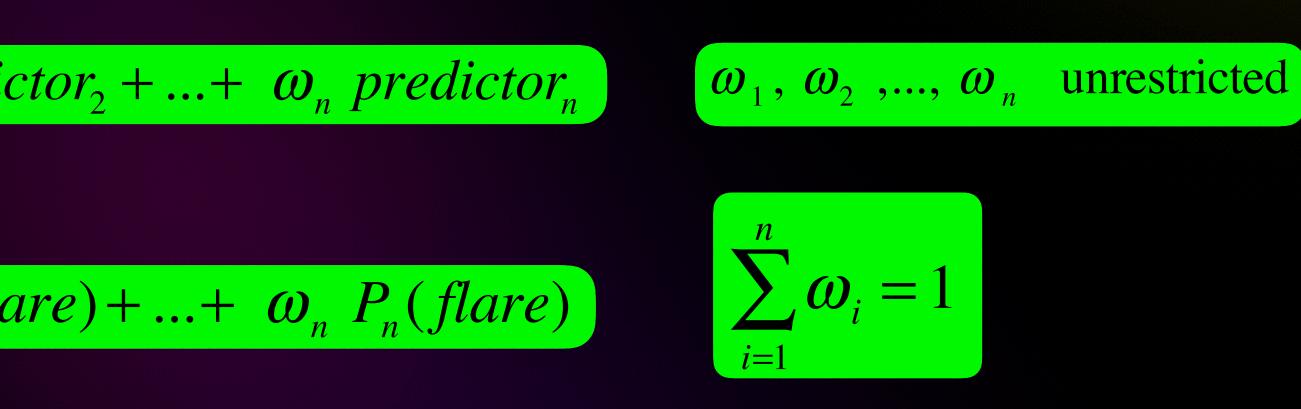
predictor = ω_1 predictor + ω_2 predictor + ...+ ω_n predictor

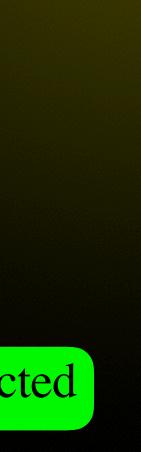
– Ensemble forecasting:

$$P(flare) = \omega_1 P_1(flare) + \omega_2 P_2(flare)$$

Task: find $\omega_1, \omega_2, \ldots, \omega_n$ such that validation results are <u>optimized</u> •

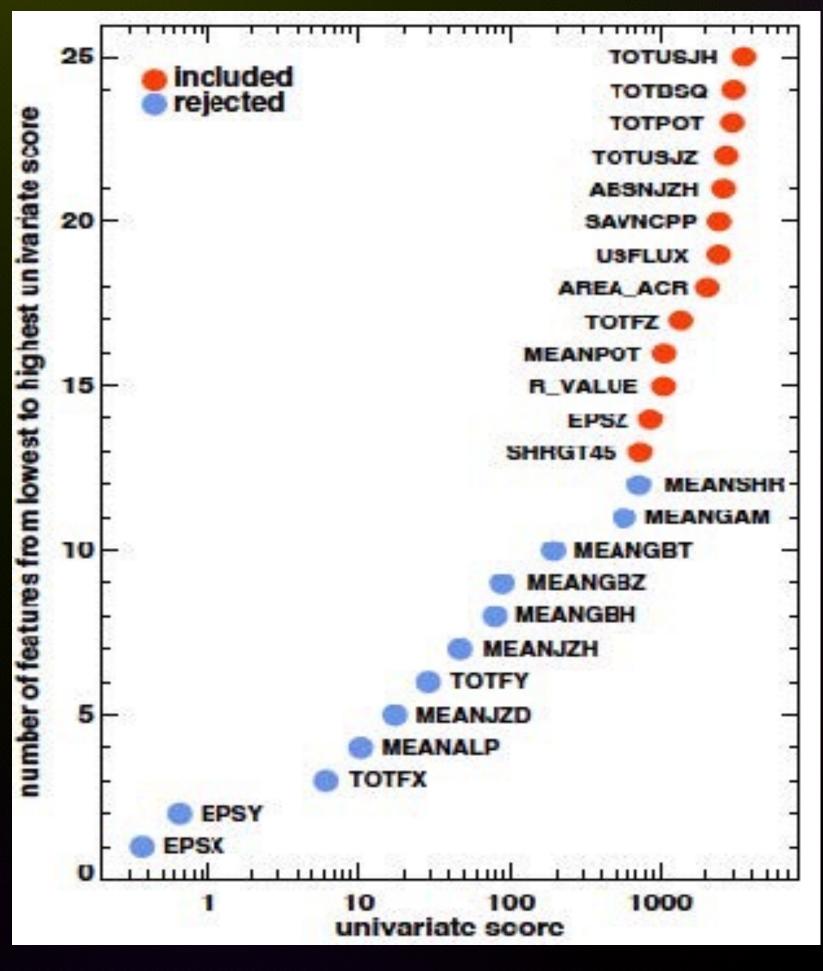
However: optimization means different things to different communities!





INDICATIVE RESULTS

Multivariate forecasting



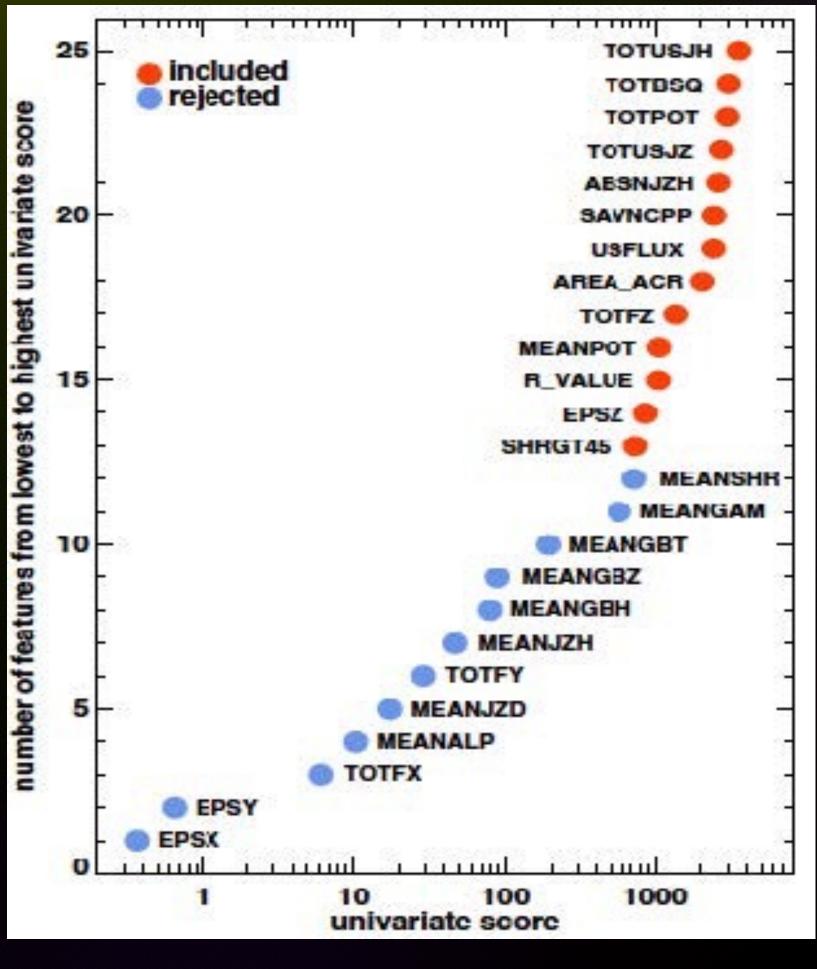
- Ordering of predictors by means of a univariate Fisher ranking score
- Machine-learning classifiers adopted

Bobra & Couvidat (2014)

ð

INDICATIVE RESULTS

Multivariate forecasting

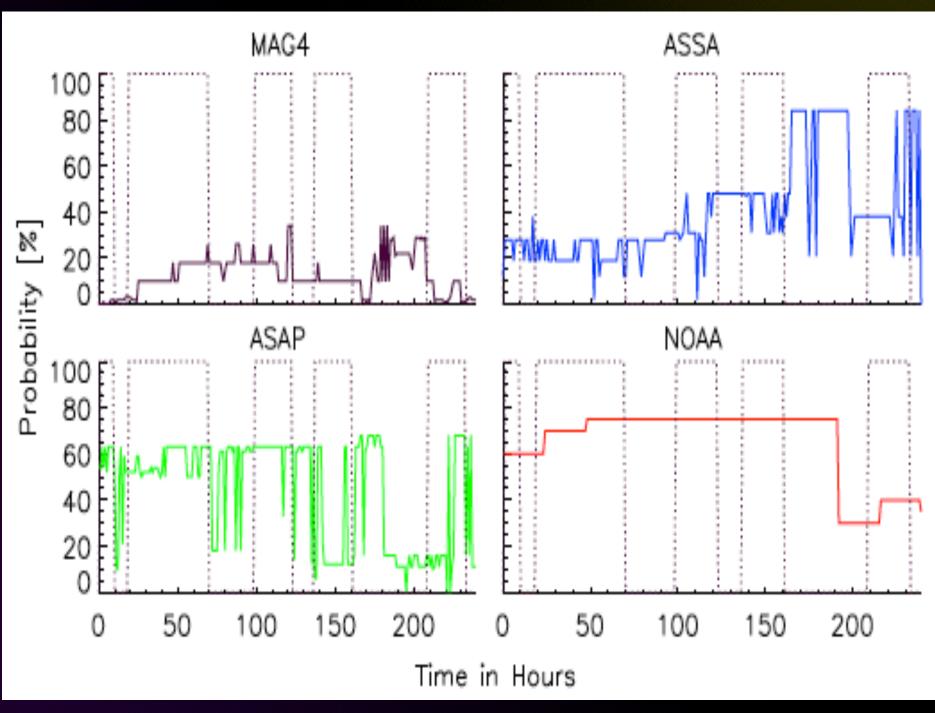


ESWW13

- Ordering of predictors • by means of a univariate Fisher ranking score
- Machine-learning classifiers adopted

Homogenizing the results of multiple flare prediction methods, using them with equal or non-equal weights for an ensemble forecasting

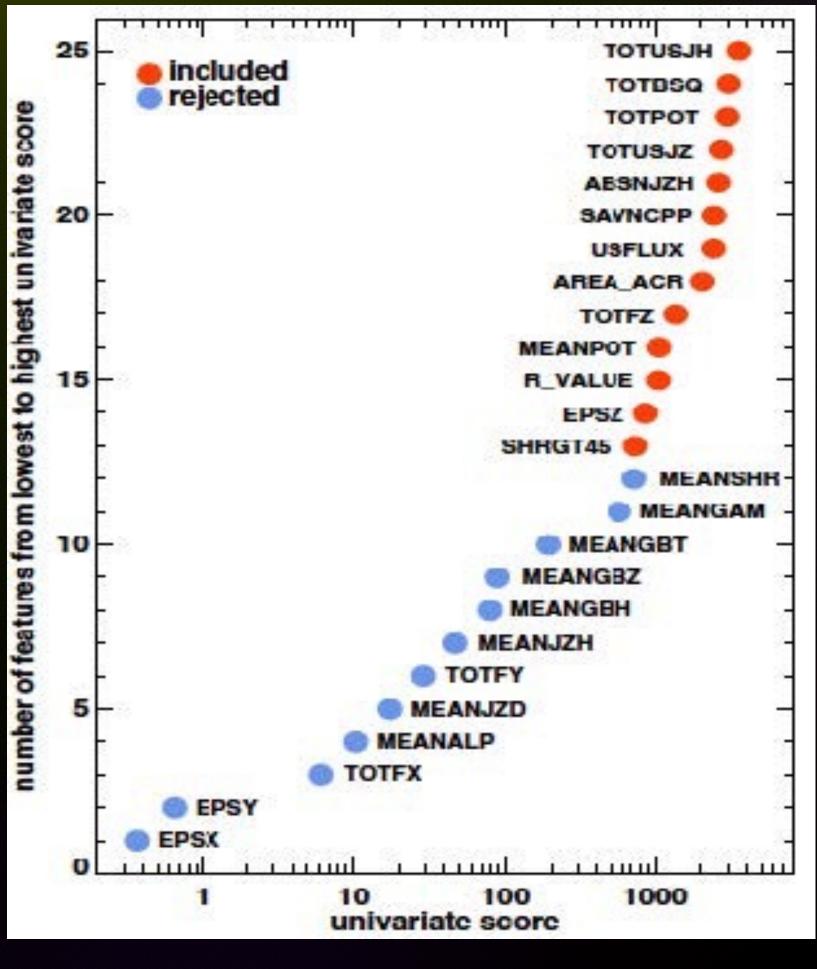
Ensemble forecasting



Guerra et al., (2015)

INDICATIVE RESULTS

Multivariate forecasting

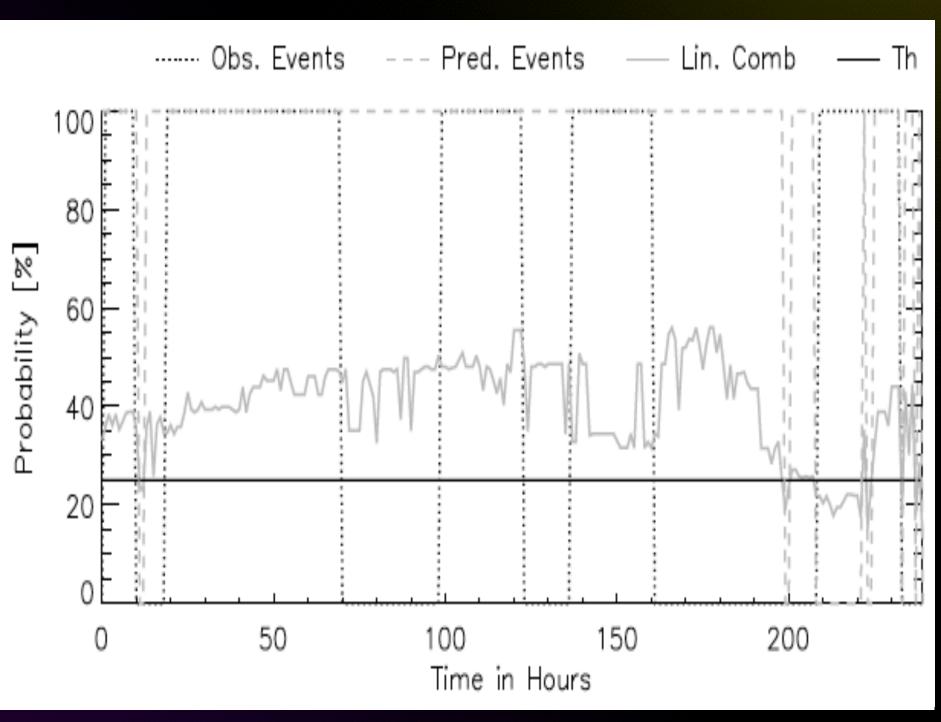


ESWW13

- Ordering of predictors • by means of a univariate Fisher ranking score
- Machine-learning \bullet classifiers adopted

Ensemble forecasting

Homogenizing the results of multiple flare prediction methods, using them with equal or non-equal weights for an ensemble forecasting



Guerra et al., (2015)

JUDGING WHICH METHODS WORK: VALIDATION

- Existing methods are borrowed from terrestrial weather forecasting •
- Two types of validation •
 - On <u>binary</u> (YES / NO) prediction output •
 - On probabilistic (0) prediction output•
- Both are used in flare prediction •

M. K. Georgoulis & R. Qahwaji

VALIDATION: BORROWED BY TERRESTRIAL WEATHER FORECASTING

Binary validation: Flare (YES) or No Flare (NO) Tailoring according to different end user needs

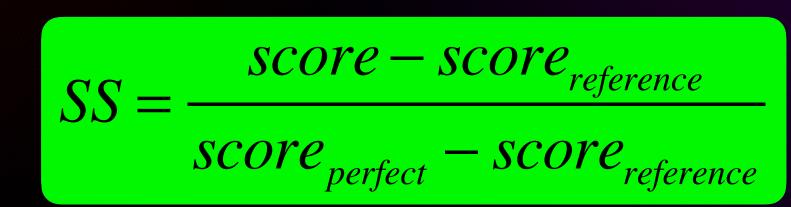
	Forecast Flare	Forecast No-flare
Observed Flare	TP	FN
Observed No-flare	FP	TN

2 x 2 contingency table

- TP : true positives
- FN : false negatives •
- FP : false positives •
- TN : true negatives

Table courtesy: Shaun Bloomfield

Generalized skill score: •



M. K. Georgoulis & R. Qahwaji

VALIDATION: BORROWED BY TERRESTRIAL WEATHER FORECASTING

Binary validation: Flare (YES) or No Flare (NO)

	Forecast Flare	Forecast No-flare
Observed Flare	TP	FN
Observed No-flare	FP	TN

2 x 2 contingency table

- TP : true positives
- FN : false negatives •
- FP : false positives
- TN : true negatives •

Table courtesy: Shau

Generalized skill score:

Tailoring according to different end user needs

Heidke skill score (ref: random prediction): •

$$HSS = \frac{2(TP + TN) - N}{N}$$

Appleman skill score (ref: climatology [v]):

$$ApSS = \frac{TP - FP}{N}$$

True skill statistic (ref: weighting POD w. POFD):

TSS = POD - POFD

M. K. Georgoulis & R. Qahwaji

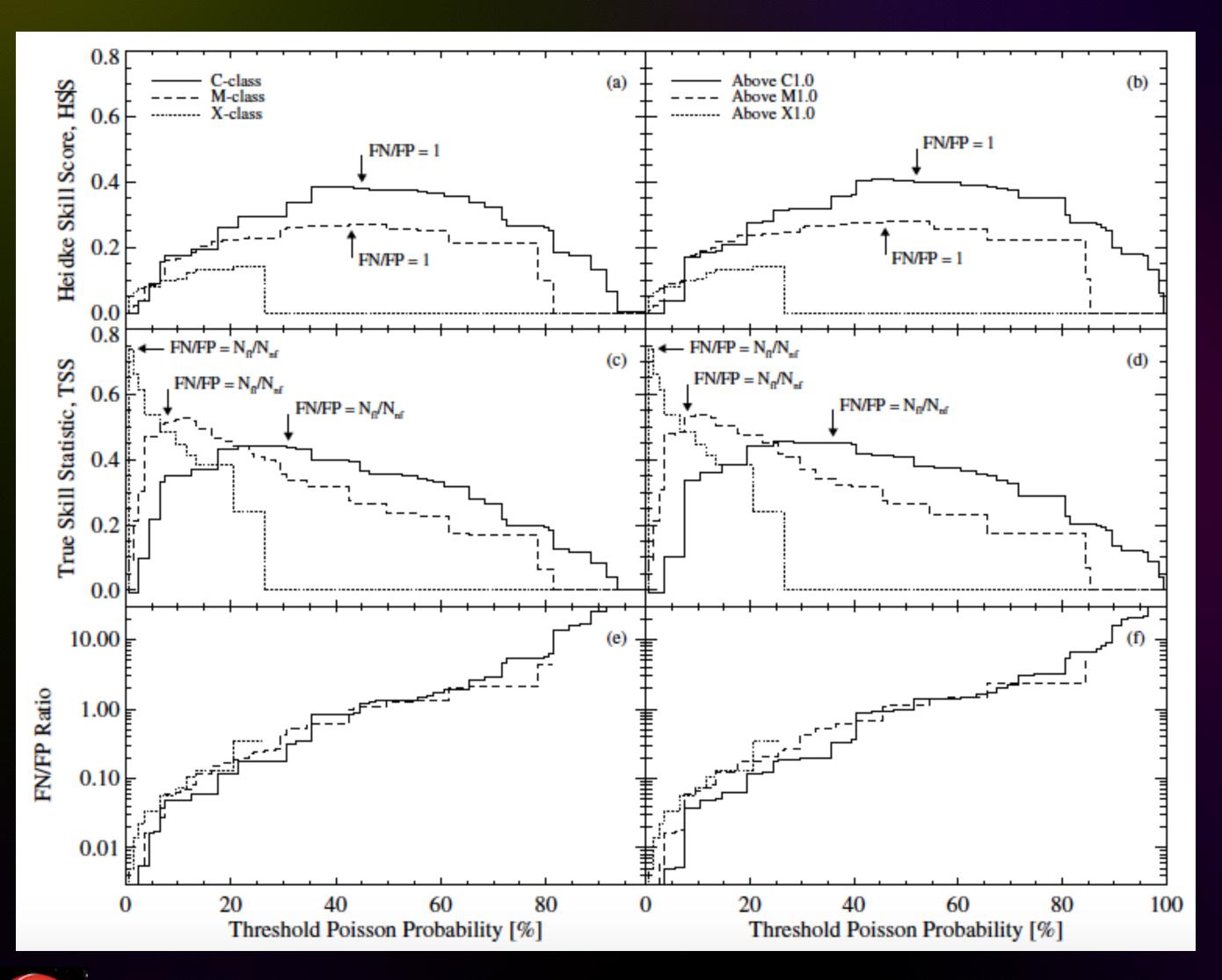
(SOME) BINARY FORECAST VERIFICATION METRICS

Metric Name	Short Name	Format	Worst Score	"No skill" Score	Perfect Score
Accuracy	ACC	(TP + TN) / N	0		1
Probability of detection	POD	TP / (TP + FN)	0	•••	1
Probability of false detection (false alarm rate)	POFD	FP / (FP + TN)	1	•••	0
False alarm ratio	FAR	FP / (TP + FP)	1		0
True skill statistic	TSS	POD - POFD	-1	0	1
Heidke skill score	HSS	(TP + TN - E _{random})/(N - E _{random})	-1	0	1

Slide courtesy: Shaun Bloomfield

M. K. Georgoulis & R. Qahwaji

SOME INDICATIVE RESULTS



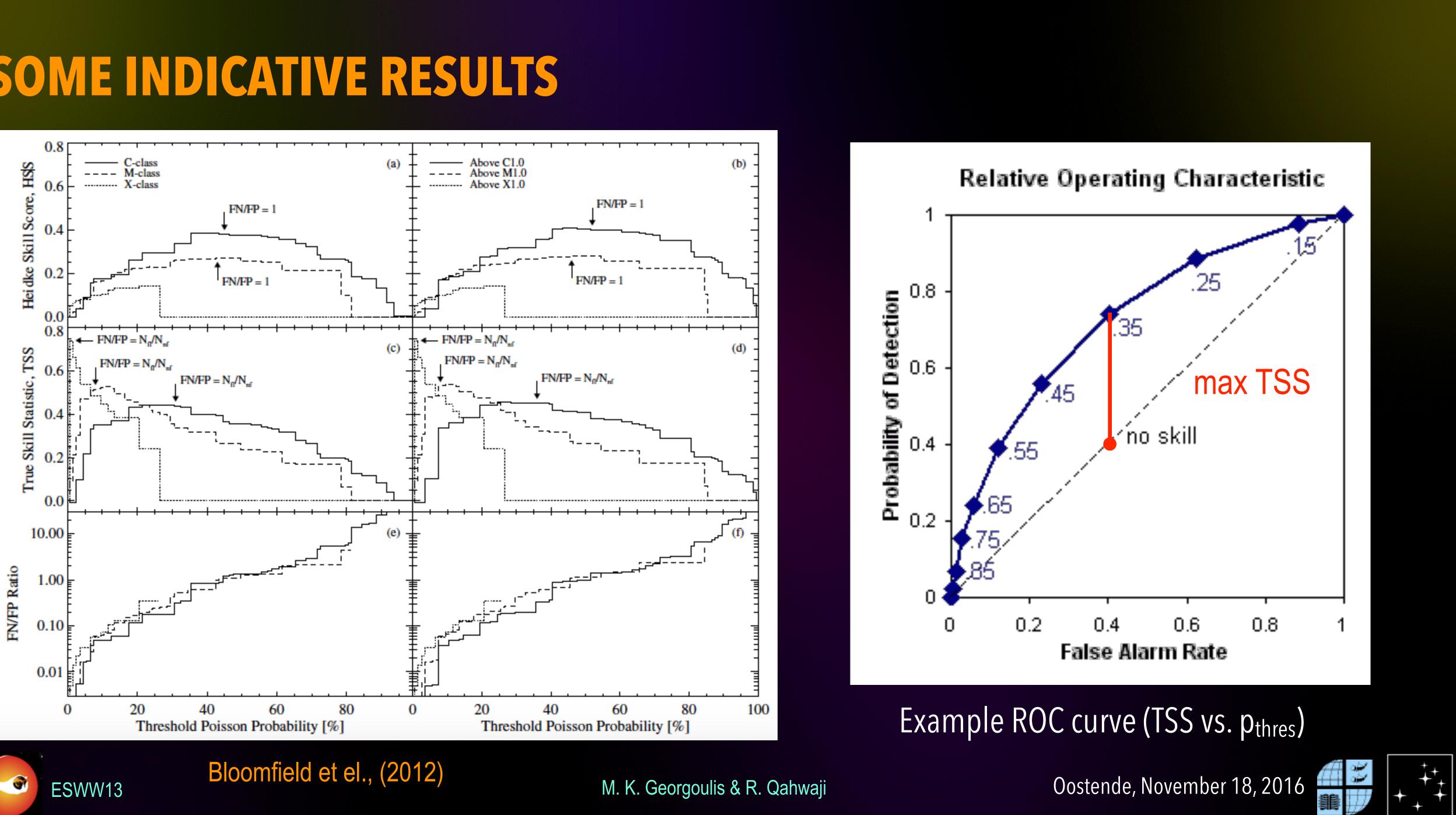
Bloomfield et el., (2012)

3

ESWW13

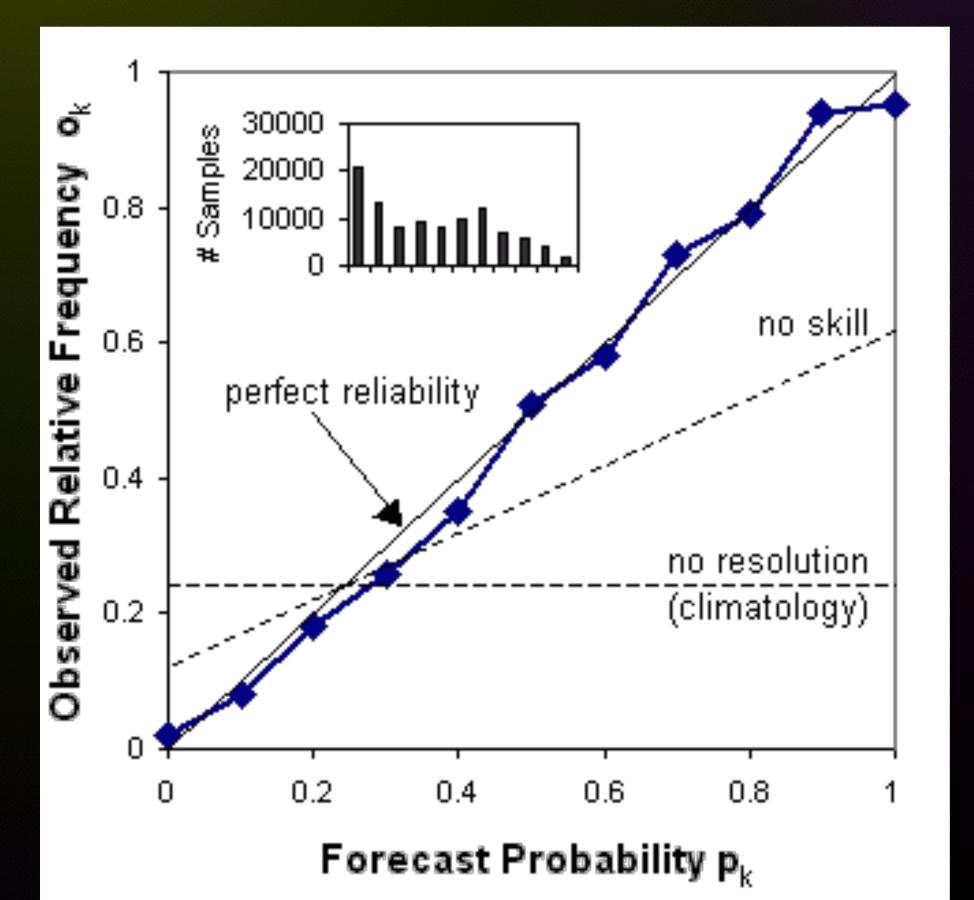
M. K. Georgoulis & R. Qahwaji

SOME INDICATIVE RESULTS



PROBABILISTIC VALIDATION

Accept that a probability 0 < p < 1 is assigned to each prediction

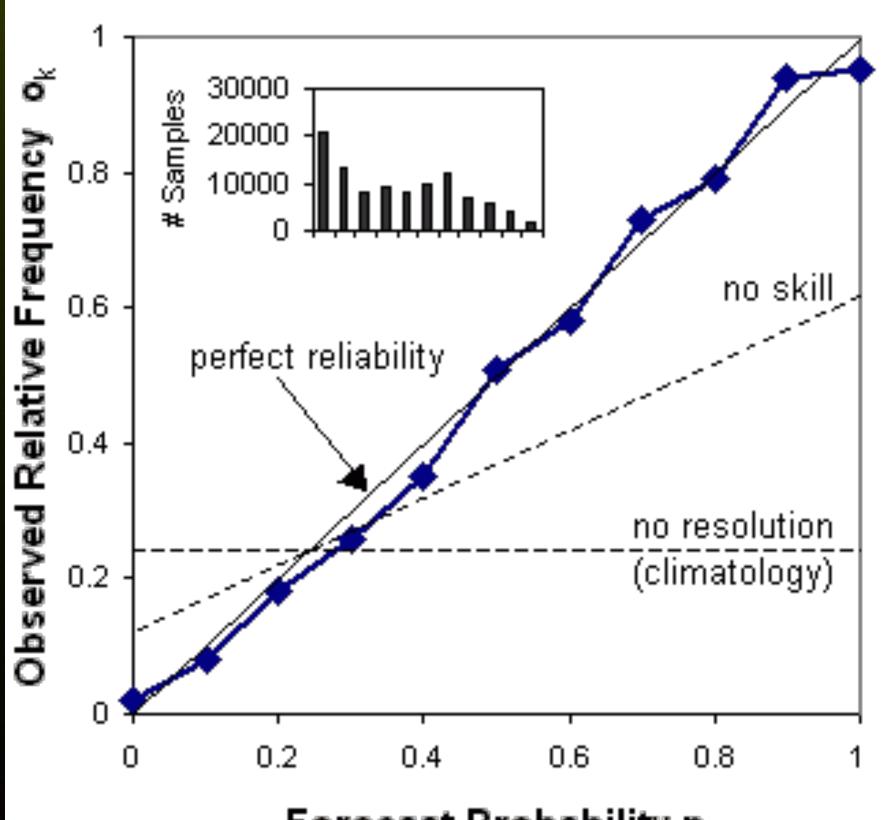


Reliabillity diagram

M. K. Georgoulis & R. Qahwaji

PROBABILISTIC VALIDATION

Accept that a probability 0 < p < 1 is assigned to each prediction



Forecast Probability p_k

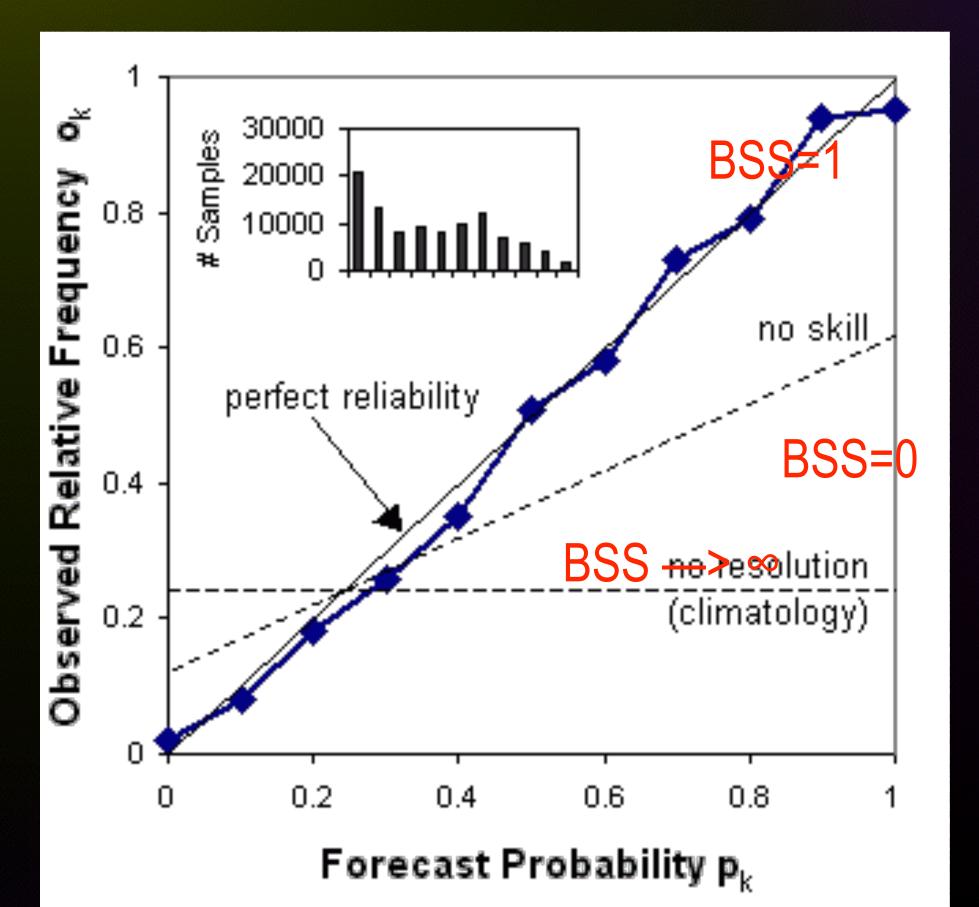
Reliabillity diagram

Correlate forecast probability with observed frequency Compare your skill against climatology (mean flaring rate within forecast window)

M. K. Georgoulis & R. Qahwaji

PROBABILISTIC VALIDATION

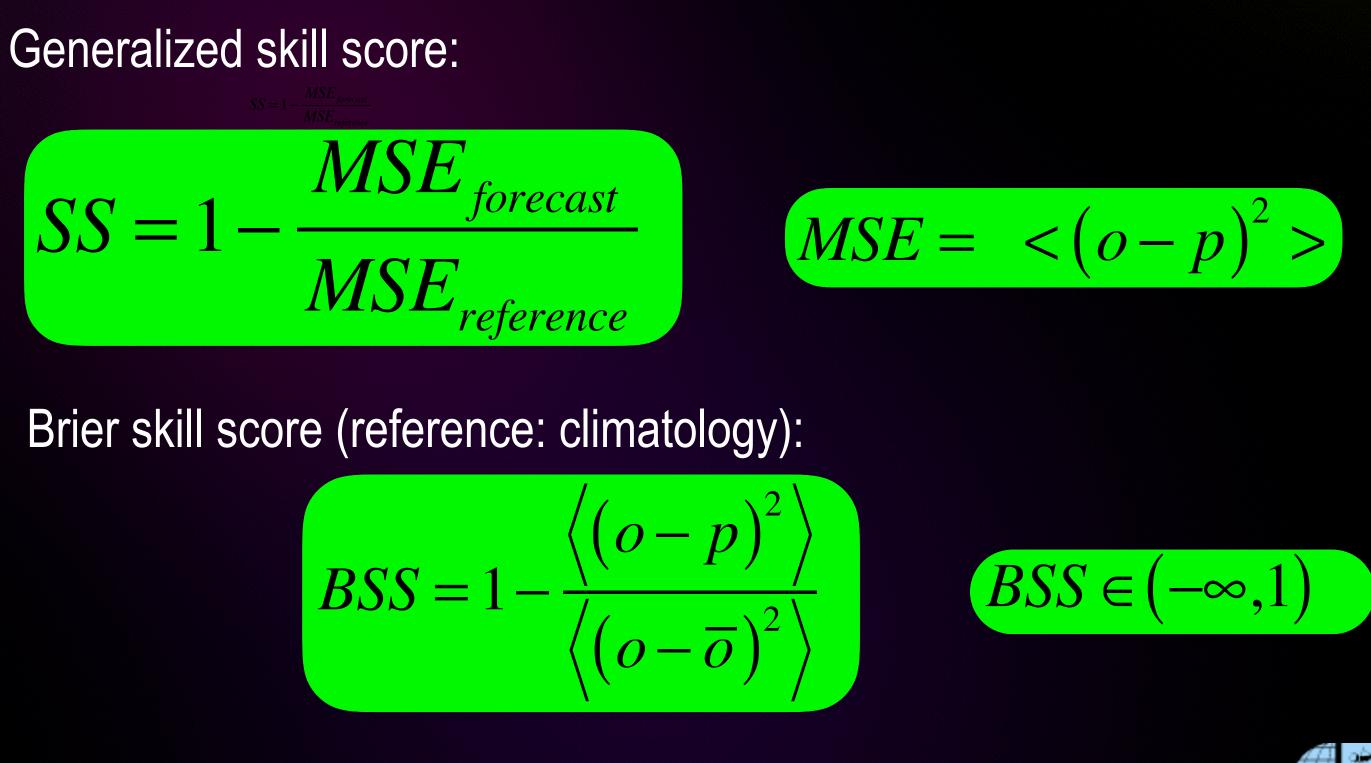
Accept that a probability 0 < p < 1 is assigned to each prediction



- Correlate forecast probability with observed frequency Compare your skill against climatology (mean flaring rate within forecast window)

- ullet

Reliabillity diagram

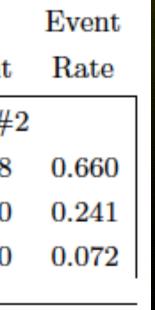


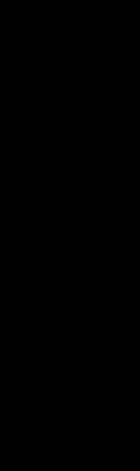
M. K. Georgoulis & R. Qahwaji

FIRST EFFORT TO COMPARE METHOD PERFORMANCES ON COMMON DATA SETS

Recently published (Barnes et al., 2016)

								Event	Event	No	Event	Event	No	Event	Event	No
Parameter/	Statistical	C1.0+	$24\mathrm{hr}$	M1.0+	, 12 hr	M5.0+	$, 12 \mathrm{hr}$	List		Event	Rate		Event	Rate		Event
Method	Method	ApSS	BSS	ApSS	BSS	ApSS	BSS			AD			MCD#1			MCD#2
B_{eff}	Bayesian	0.12	0.06	0.00	0.03	0.00	0.02	C1.0+, 24 hr	2609	10356	0.201	789	3751	0.174	249	128
ASAP	Machine	0.25	0.30	0.01	-0.01	0.00	-0.84	M1.0+, 12 hr	400	12565	0.031	102	3162	0.031	70	220
BBSO	Machine	0.08	0.10	0.03	0.06	0.00	-0.01	M5.0+, 12 hr	93	12872	0.007	26	3633	0.007	21	270
WL_{SG2}	Curve fitting	N/A	N/A	0.04	0.06	0.00	0.02									
NWRA MAG 2-VAR	NPDA	0.24	0.32	0.04	0.13	0.00	0.06									
$\log(\mathcal{R})$	NPDA	0.17	0.22	0.01	0.10	0.02	0.04									
GCD	NPDA	0.02	0.07	0.00	0.03	0.00	0.02									
NWRA MCT 2-VAR	NPDA	0.23	0.28	0.05	0.14	0.00	0.06									
SMART2	CCNN	0.24	-0.12	0.01	-4.31	0.00	-11.2									
Event Statistics, 10 prior	Bayesian	0.13	0.04	0.01	0.10	0.01	0.00									
McIntosh	Poisson	0.15	0.07	0.00	-0.06	N/A	N/A									





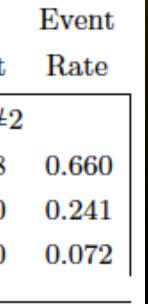
FIRST EFFORT TO COMPARE METHOD PERFORMANCES ON COMMON DATA SETS

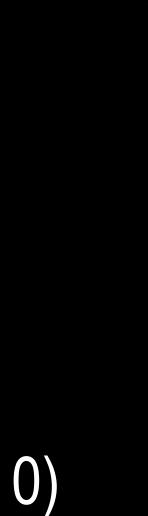
Recently published (Barnes et al., 2016)

								Event	Event	No	Event	Event	No	Event	Event	No
Parameter/	Statistical	C1.0+	$, 24 \mathrm{hr}$	M1.0+	, 12 hr	M5.0+	, 12 hr	List		Event	Rate		Event	Rate		Event
Method	Method	ApSS	BSS	ApSS	BSS	ApSS	BSS			AD			MCD#1			MCD#2
B_{eff}	Bayesian	0.12	0.06	0.00	0.03	0.00	0.02	C1.0+, 24 hr	2609	10356	0.201	789	3751	0.174	249	128
ASAP	Machine	0.25	0.30	0.01	-0.01	0.00	-0.84	M1.0+, 12 hr	400	12565	0.031	102	3162	0.031	70	220
BBSO	Machine	0.08	0.10	0.03	0.06	0.00	-0.01	M5.0+, 12 hr	93	12872	0.007	26	3633	0.007	21	270
WL_{SG2}	Curve fitting	N/A	N/A	0.04	0.06	0.00	0.02									
NWRA MAG 2-VAR	NPDA	0.24	0.32	0.04	0.13	0.00	0.06									
$\log(\mathcal{R})$	NPDA	0.17	0.22	0.01	0.10	0.02	0.04									
GCD	NPDA	0.02	0.07	0.00	0.03	D.00	0.02									
NWRA MCT 2-VAR	NPDA	0.23	0.28	0.05	0.14	0.00	0.06	Appa	rontl		rea		fore	narn	٥r	
SMART2	CCNN	0.24	-0.12	0.01	-4.31	0.00	-11.2				_					
Event Statistics, 10 prior	Bayesian	0.13	0.04	0.01	0.10	0.01	0.00	(i.e.,	incre	asin	g flai	re cla	ass)	even	its	
McIntosh	Poisson	0.15	0.07	0.00	-0.06	N/A	N/A						/			
				, 												

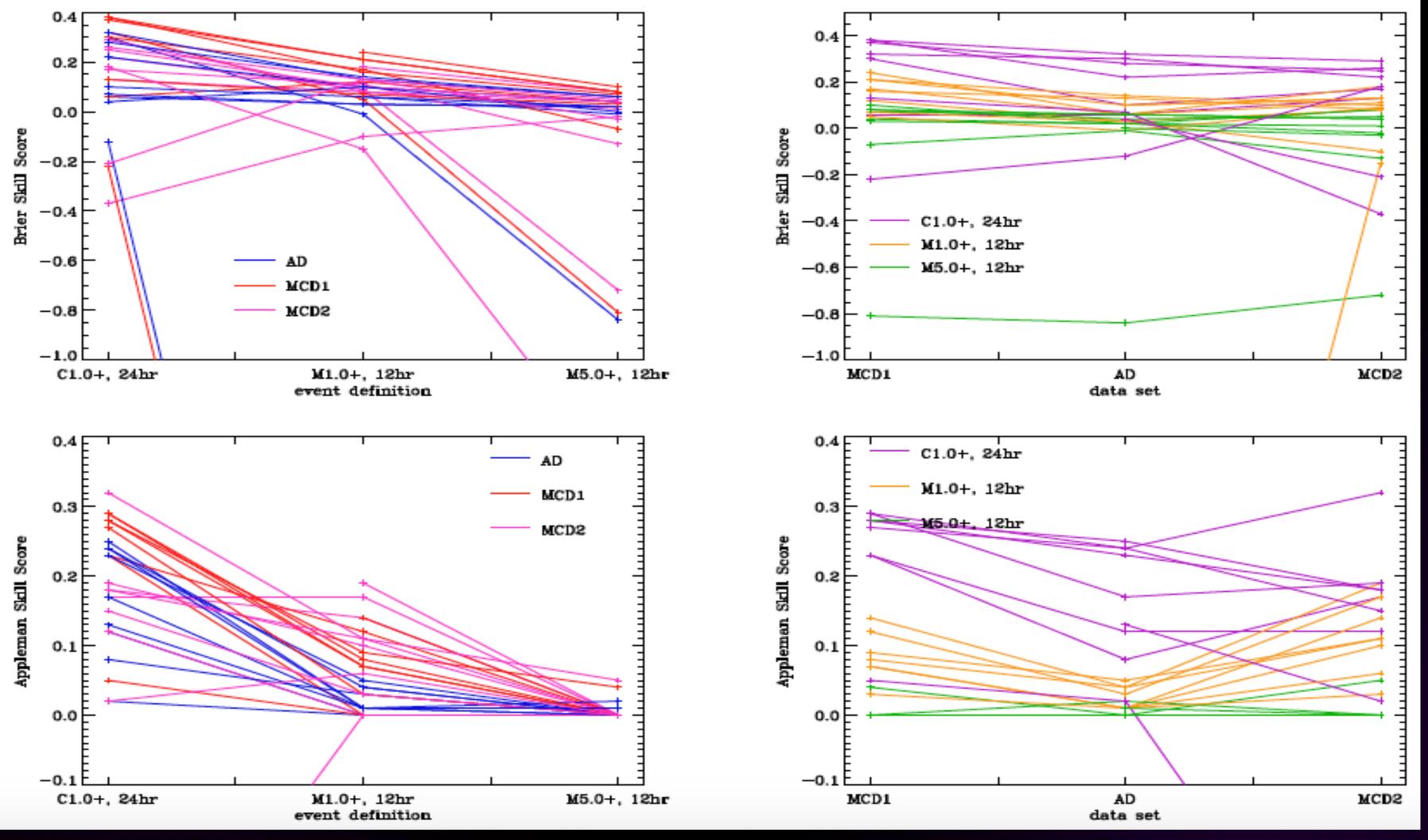
M. K. Georgoulis & R. Qahwaji

Typically a bit - but not much - better than climatology (> 0) / quite often worse than climatology (< 0)





FIRST EFFORT TO COMPARE METHOD PERFORMANCES ON COMMON DATA ETS



Barnes et al., (2016)

ESWW13

Generally, there is no method clearly outperforming the others

M. K. Georgoulis & R. Qahwaji

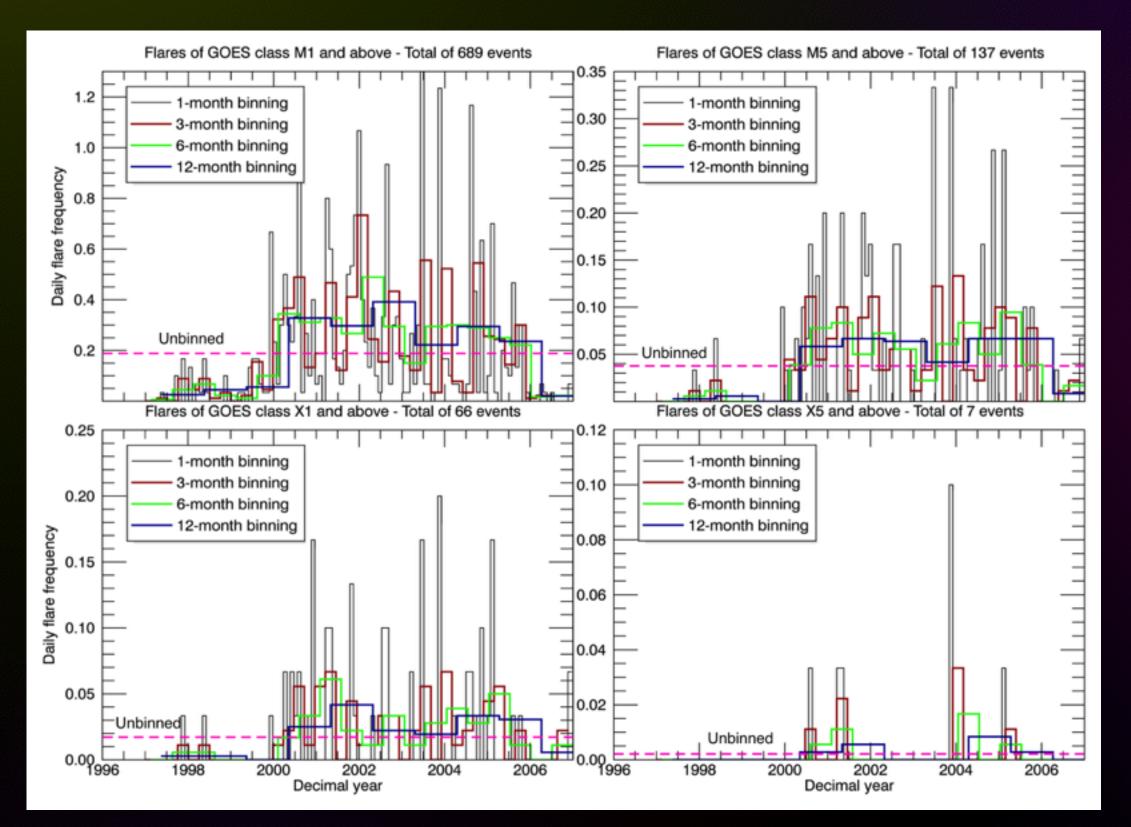
VALIDATION REQUIREMENTS

 Balanced dataset of flaring and nonflaring populations (correct flaring rates)

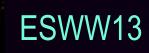
M. K. Georgoulis & R. Qahwaji

VALIDATION REQUIREMENTS

 Balanced dataset of flaring and nonflaring populations (correct flaring rates)



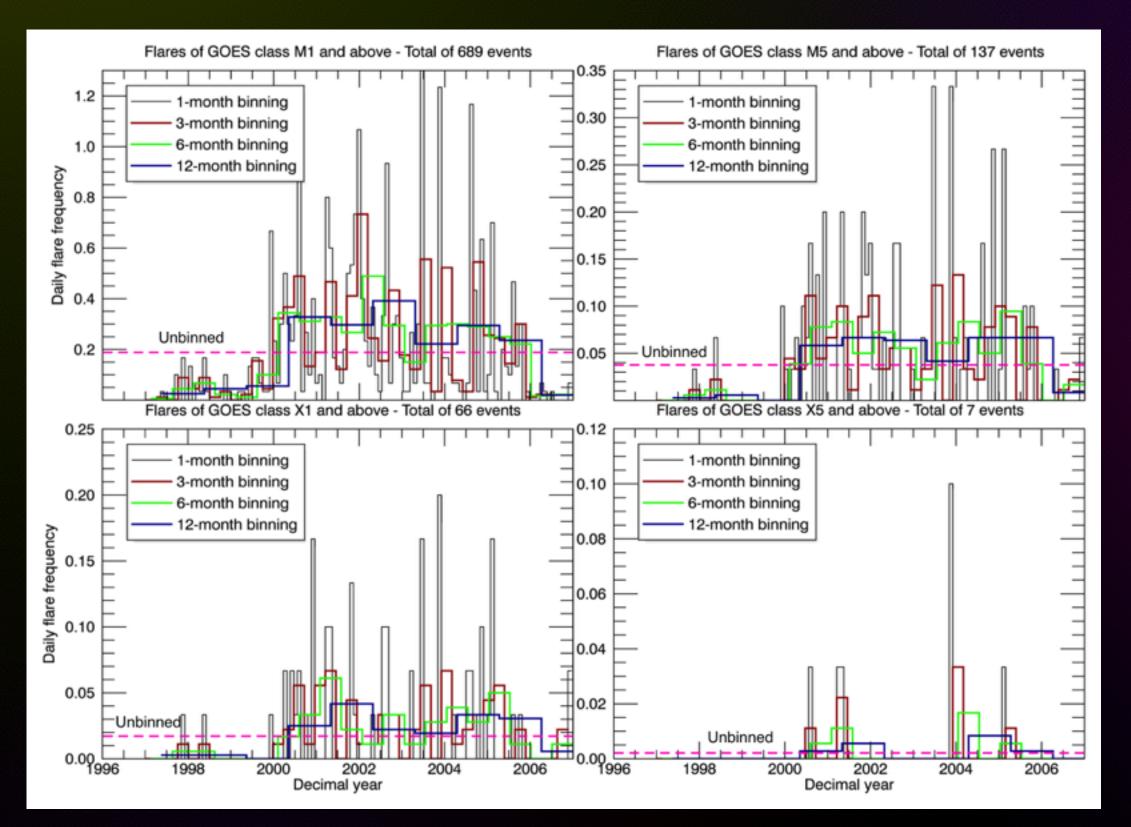
Flaring rates over solar cycle 23 (M1+, M5+, X1+, X5+)



M. K. Georgoulis & R. Qahwaji

VALIDATION REQUIREMENTS

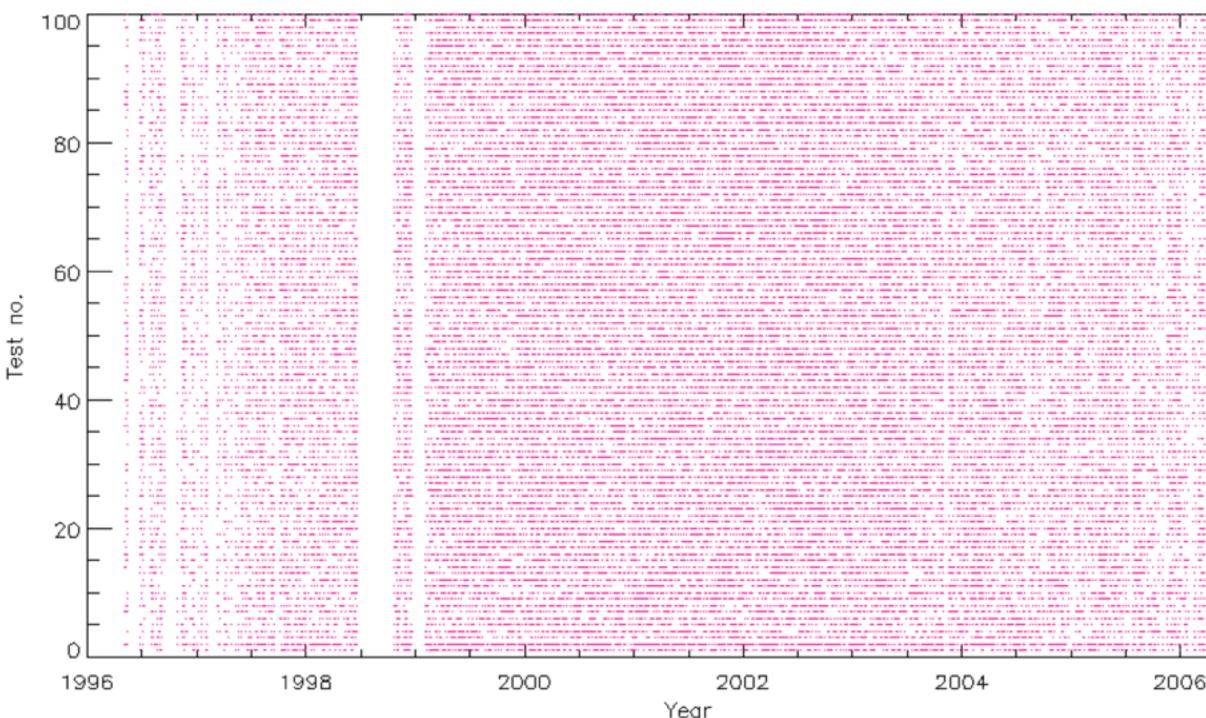
 Balanced dataset of flaring and nonflaring populations (correct flaring rates)



Random selection of training (white) and testing (red dots) subsets Flaring rates over solar cycle 23 (M1+, M5+, X1+, X5+)

ESWW13

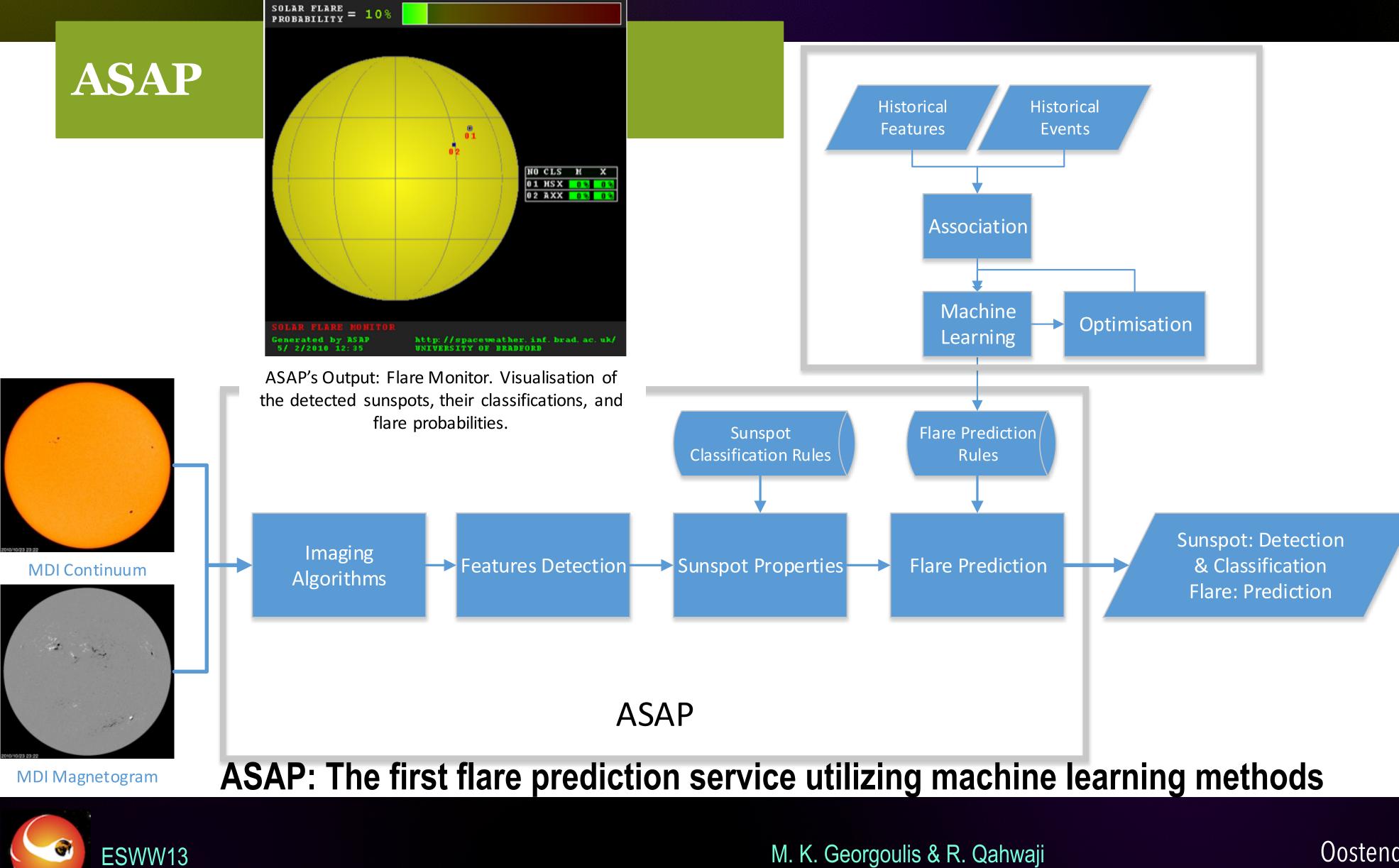
Large number of validation tests, using randomly chosen training and test sets



M. K. Georgoulis & R. Qahwaji

 _
 _
 _
 _
 _
_
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
_

FROM PREDICTION METHODS TO OPERATIONAL FLARE FORECASTING SERVICES

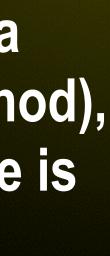


M. K. Georgoulis & R. Qahwaji

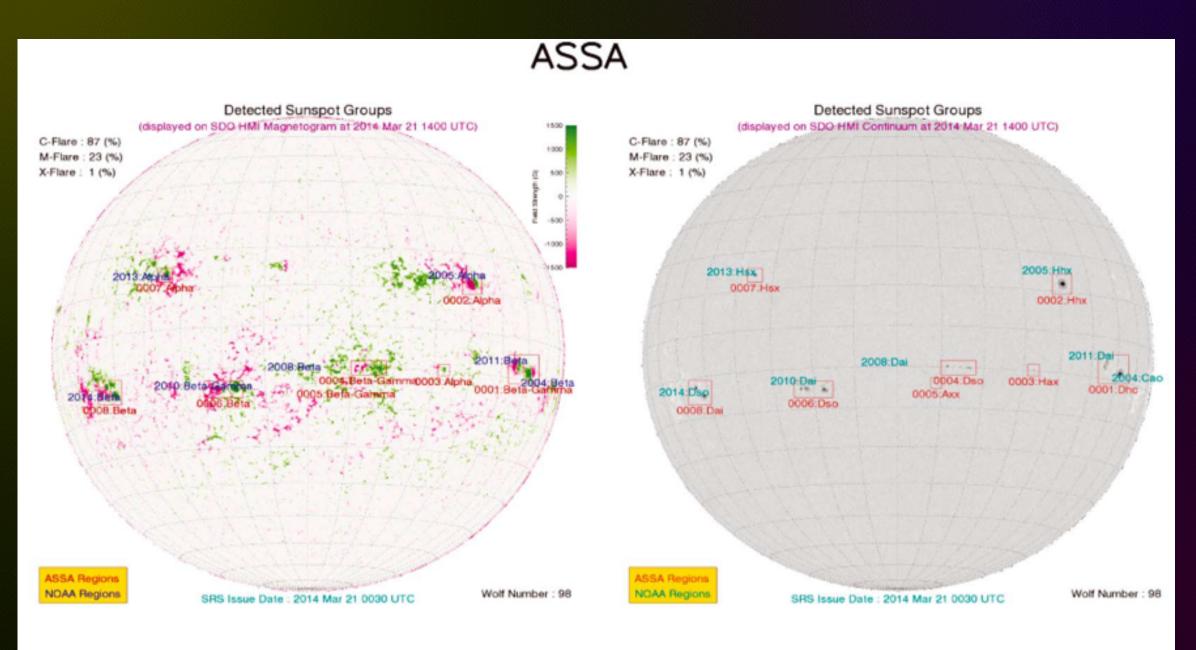
Besides the idea (prediction method), an infrastructure is also needed

Complete automation means:

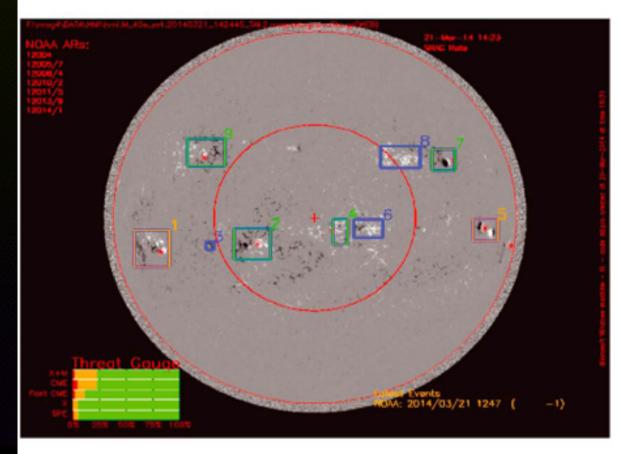
- Ease of calculations
- Ease of maintenance
- Resilience
- Modularity, for improvement



EXISTING FLARE PREDICTION SERVICES AROUND THE WORLD

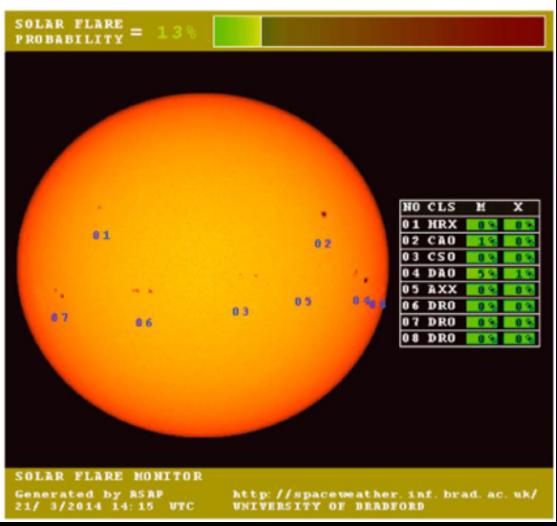


MAG4

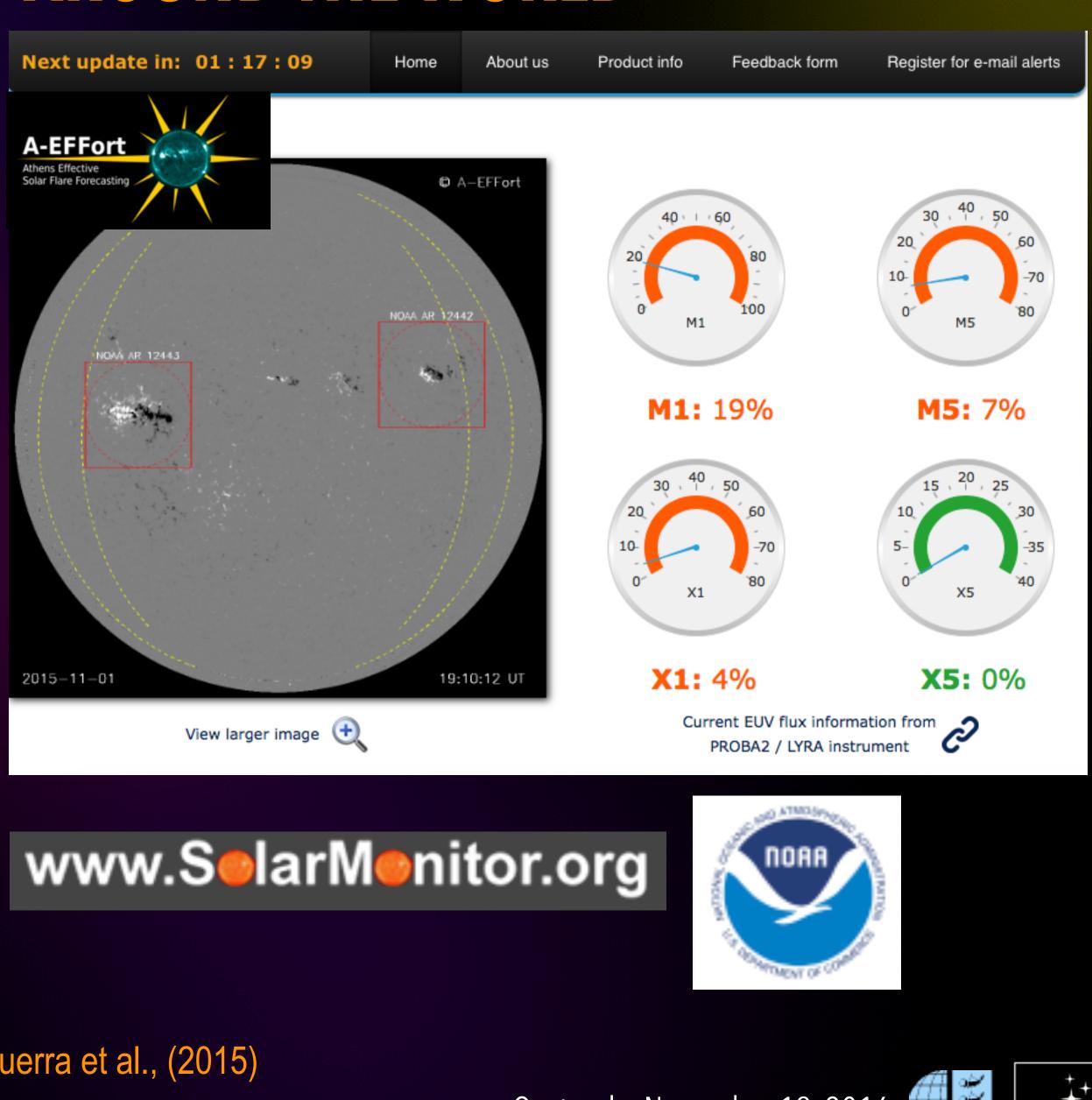


3

ESWW13



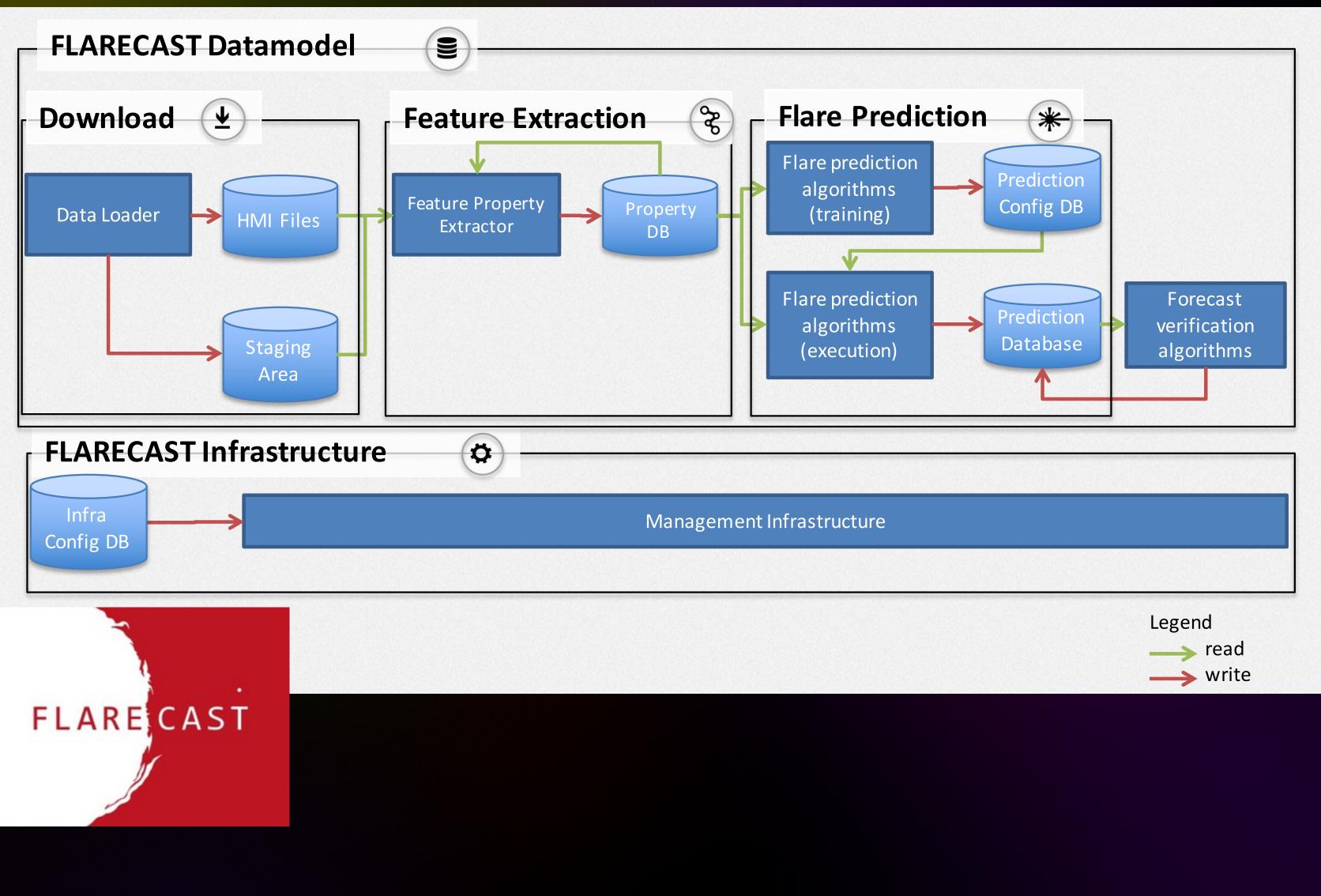
ASAP



Oostende, November 18, 2016

Guerra et al., (2015) M. K. Georgoulis & R. Qahwaji

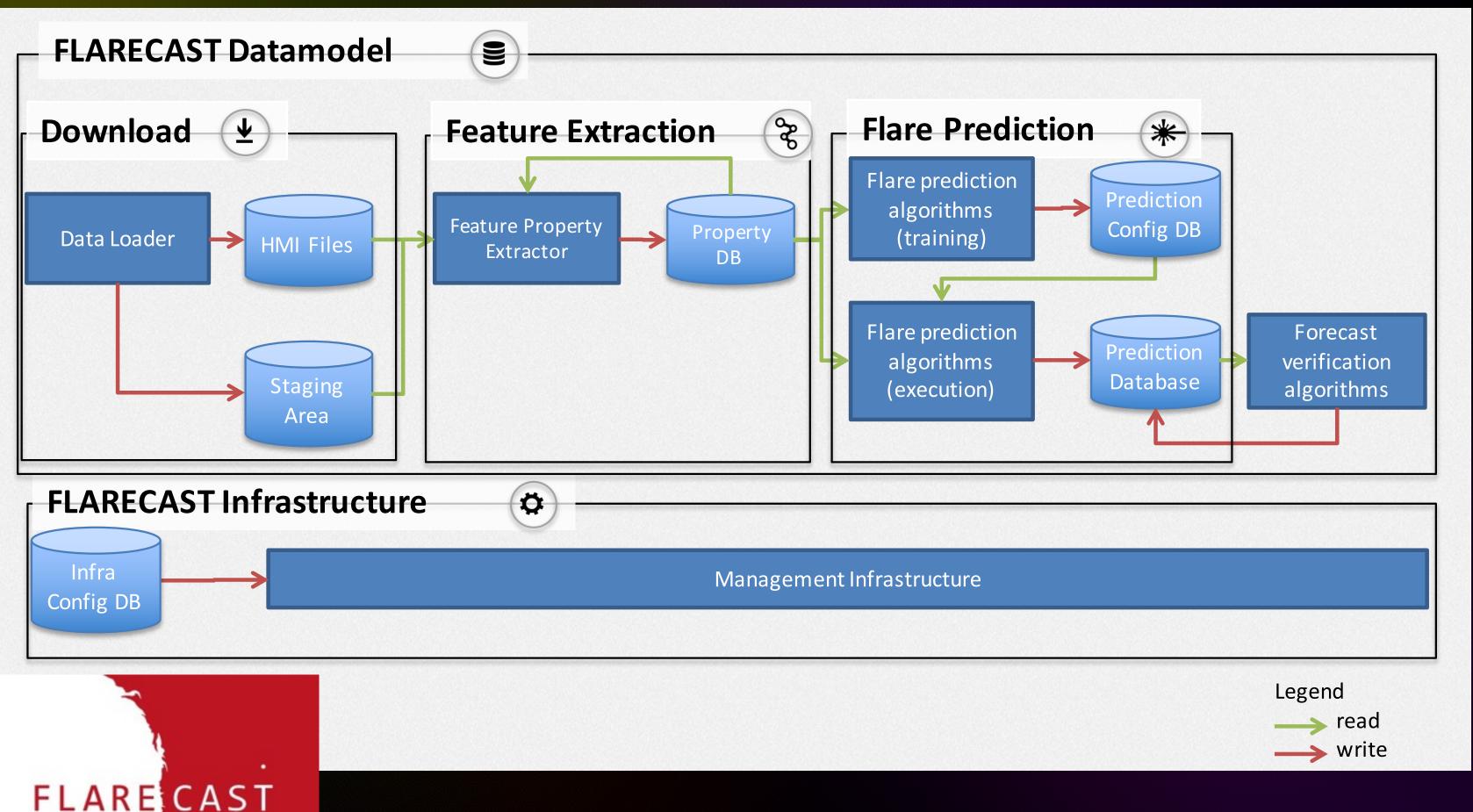
A NUMBER OF FORTHCOMING SERVICES



M. K. Georgoulis & R. Qahwaji

Europe, USA, Japan

A NUMBER OF FORTHCOMING SERVICES



- •
- Aphorism: validation, validation, validation ...

Europe, USA, Japan

Fact: Virtually all planned services rely essentially on multivariate predictors

CONCLUSIONS

- \star
- Can flares be predicted, however? \star
 - Quite likely, major flare prediction will remain probabilistic in the future •
 - But is this due to the nature of the problem, or due to lack of crucial information or a flawed approach? •
 - How far along we can go remains TBS the goal of various flare forecasting efforts is to bring probabilistic flare prediction as close as possible to a binary (YES / NO one)
- * Customized, but always <u>unbiased</u>, validation : its importance cannot be stressed enough
- ★ Multivariate forecasting, enabled by machine-learning and other methods (i.e., PCA, DA) seems to be the norm for future services — we can do it nowadays, can't we?
- * <u>However, we need to raise Occam's razor</u> : how many / which parameters do we need for a sufficient forecasting? The answer will drive developments in our physical understanding of flare triggering

Consensus that reliable, automated solar flare prediction should be an asset of our SWE forecasting efforts

CONCLUSIONS

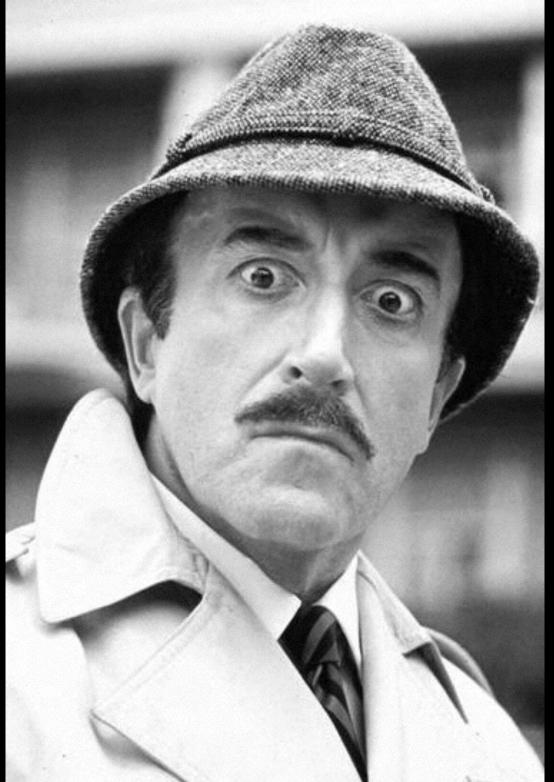
- \star
- Can flares be predicted, however? \star
 - Quite likely, major flare prediction will remain probabilistic in the future •
 - But is this due to the nature of the problem, or due to lack of crucial information or a flawed approach? •
 - How far along we can go remains TBS the goal of various flare forecasting efforts is to bring probabilistic flare prediction as close as possible to a binary (YES / NO one)
- * Customized, but always <u>unbiased</u>, validation : its importance cannot be stressed enough
- ★ Multivariate forecasting, enabled by machine-learning and other methods (i.e., PCA, DA) seems to be the norm for future services — we can do it nowadays, can't we?
- * <u>However, we need to raise Occam's razor</u> : how many / which parameters do we need for a sufficient forecasting? The answer will drive developments in our physical understanding of flare triggering

Consensus that reliable, automated solar flare prediction should be an asset of our SWE forecasting efforts

Diverse expertise and ways of thinking are generally needed

M. K. Georgoulis & R. Qahwaji

All these issues and challenges referring to flare prediction ...



All these issues and challenges referring to flare prediction ...

... we haven't even touched CME and SEP prediction yet!

BACKUP SLIDES