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Hard flare photons and non-thermal particulate (mostly 
protons >10 MeV) affect humans beyond LEO and on 
solar system bodies lacking an  atmosphere. Damages in 
space-based electronics, radio blackouts, etc., can occur as 
a result of flares

No early warning time for flare photons -  
slim window for particulate in worst case! 
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MAJOR FLARE REPERCUSSIONS: EVERYTHING UNDER THE SUN
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A PHENOMENOLOGY DEFINITION …

A sudden commencement of enhanced, localized electromagnetic emission extending over practically the entire range of the 
electromagnetic spectrum. Typically measured in 1 - 8 Å SXR  
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… AND STATISTICAL BEHAVIOR

“Active” solar conditions over a 3-day period in July 2000
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Flare occurrence number vs. 
integrated photon flux

Drake (1971) 

NATURE OF FLARE OCCURRENCE
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Flare occurrence number vs. 
integrated photon flux

Drake (1971) 
Flares are (Rosner & Vaiana 1978): 

• Stochastic relaxation (storage and 
release) processes

• Physically uncoupled / independent
• Brief, comparing to intermediate 

times between flares

P(t) = ν e−ν t
• Leading to a power-law occurrence 

frequency for flare energies

P(E) ~ 1+ E E0( )−γ
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• Leading to a power-law occurrence 

frequency for flare energies

P(E) ~ 1+ E E0( )−γ

NATURE OF FLARE OCCURRENCE

Power-law distribution of flare size later 
attributed to the concept of self-
organized criticality  (1990s)
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A RATHER GRAPHIC EXAMPLE OF MARGINAL STABILITY
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Credit: Aaron Mak - YouTube
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HOWEVER, ARE FLARES RANDOM? - DISTRIBUTION OF WAITING 
TIMES
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Crosby, PhD Thesis (1996) 

Exponential law of waiting 
times: a totally random, 
memoryless flare occurrence 
along the classical self-
organized criticality concept
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HOWEVER, ARE FLARES RANDOM? - DISTRIBUTION OF WAITING 
TIMES

Crosby, PhD Thesis (1996) 

Exponential law of waiting 
times: a totally random, 
memoryless flare occurrence 
along the classical self-
organized criticality concept

Robust power-law of waiting 
times: a system perfectly 
keeping a memory in giving 
flares

Bofetta et al., (1999) 

Wheatland (2000) 

Time-dependent Poisson scaling in 
waiting times: some memory kept, with 
stochasticity demonstrated in an 
exponential distribution of different flaring 
rates

Wheatland (2000)
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• NOAA AR 10930 
• Period observed: ~16 days 

• Clustering of flares in a flaring active region 

• Flaring features of active regions, i.e., complex 
magnetic PILs, continuously and consistently 
driven 

• Typical situation of a pink-noise dynamical 
response timeseries 

A MIX OF STOCHASTICITY AND MEMORY

Response of NOAA AR 10930 over a two-week period in Dec 2006
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QUALITATIVE COMPLEXITY CLASSIFICATION
McIntosh (1990)

alpha: A unipolar sunspot group.  
 
beta: A sunspot group having both positive and negative magnetic 
polarities (bipolar), with a simple and distinct division between the 
polarities.  
 
gamma: A complex active region in which the positive and negative 
polarities are so irregularly distributed as to prevent classification as 
a bipolar group.  
 
beta-gamma: A sunspot group that is bipolar but which is sufficiently 
complex that no single, continuous line can be drawn between spots of 
opposite polarities.  
 
delta: A qualifier to magnetic classes(see below) indicating that umbrae 
separated by less than 2 degrees within one penumbra have opposite 
polarity.  
 
beta-delta: A sunspot group of general beta magnetic classification but 
containing one (or more) delta spot(s). 
 
beta-gamma-delta: A sunspot group of beta-gamma magnetic classification 
but containing one (or more) delta spot(s). 
 
gamma-delta: A sunspot group of gamma magnetic classification but 
containing one (or more) delta spot(s).

Source: spaceweather.com 

Mount Wilson classification

http://spaceweather.com
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HUMAN CLASSIFICATION, SUBJECTIVE

http://spaceweather.com


QUANTITATIVE COMPLEXITY CLASSIFICATION
Numerous methods over the past 20 years. An effort to categorize them results in the following (Georgoulis, 2012): 

Oostende, November 18, 2016ESWW13 M. K. Georgoulis & R. Qahwaji



QUANTITATIVE COMPLEXITY CLASSIFICATION
Numerous methods over the past 20 years. An effort to categorize them results in the following (Georgoulis, 2012): 

• Monoscale / multiscale methods 

• Morphological methods 

• Statistical methods (on historical & 
archived data) 

• Machine-learning, combinatorial, 
& assimilation methods

• Analytical methods
• Local helioseismology methods

• Other (slightly exotic) methods
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QUANTITATIVE COMPLEXITY CLASSIFICATION
Numerous methods over the past 20 years. An effort to categorize them results in the following (Georgoulis, 2012): 

• Monoscale / multiscale methods 

• Morphological methods 

• Statistical methods (on historical & 
archived data) 

• Machine-learning, combinatorial, 
& assimilation methods

• Analytical methods
• Local helioseismology methods

• Other (slightly exotic) methods

Abramenko et al. (2002, 2003); McAteer at al. (2005); Georgoulis  (2005, 2012); Uritsky et al. (2007, 
2013); Hewett et al. (2008); Conlon et al. (2010); Kestener et al. (2010), McAteer (2015)

Falconer et al. (2001, 2002, 2003, 2008, 2009, 2011); Georrgoulis & Rust (2007); Schrijver (2007); Mason & 
Hoeksema (2010); Leka & Barnes (2003a; b); Cabnfield et al. (1999); Barnes & Leka (2008), Korsos et al. (2015)

Wheatland (2001); Moon et al. (2001); Gallagher et al. (2002); Wheatland (2004, 2005a, b)

Belanger et al. (2007); Qahwaji & Colak (2007); Colak & Qahwaji (2008, 2009); Qahwaji et al. (2008); Al-
Omari et al. (2010); Yu et al. (2009; 2010a, b); Huang et al. (2010) ; Bobra & Couvidat (2014); Bobra & 
Ilonidis (2015); Boucheron et al., (2015); Nishizuka et al., (2016)

Wheatland & Glukhov (1998); Wheatland (2008)

Reinard et al. (2010); Komm et al. (2011), etc. 

Jenkins & Fischbach (2009); Javorsek et al. (2012); Strugarek & Charbonneau (2014)
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ANALYSIS OF PHOTOSPHERIC ACTIVE-REGION MAGNETOGRAMS
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Barnes et al., (2016) 



PROPERTIES TRANSLATED TO PREDICTIVE PROBABILITIES
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Bobra & Couvidat (2014) 

Barnes et al., (2007)

Discriminant analysis: Two-function, linear DA for 
four-class prediction (non-flaring, C, M, and X-class)



PROPERTIES TRANSLATED TO PREDICTIVE PROBABILITIES
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Bobra & Couvidat (2014) 

Barnes et al., (2007)

Discriminant analysis: Two-function, linear DA for 
four-class prediction (non-flaring, C, M, and X-class)

What is the optimal way to deal  
with all this information and still 
achieve reliable NRT forecasts?



• Most (excluding machine-learning) methods use a univariate predictor. 

RECENT TREDS IN FLARE PREDICTION
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• Most (excluding machine-learning) methods use a univariate predictor. 

• Multivariate forecasting can also be used in the form of :

— Synthetic predictors:

— Ensemble forecasting:

predictor =ω1  predictor1 +ω 2  predictor2 + ...+  ω n  predictorn

P( flare) =ω1  P1( flare)+ω 2  P2 ( flare)+ ...+  ω n  Pn ( flare)

ω 1 ,  ω 2  ,...,  ω n    unrestricted

ω i = 1
i=1

n

∑
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• Most (excluding machine-learning) methods use a univariate predictor. 

• Multivariate forecasting can also be used in the form of :

— Synthetic predictors:

— Ensemble forecasting:

predictor =ω1  predictor1 +ω 2  predictor2 + ...+  ω n  predictorn

P( flare) =ω1  P1( flare)+ω 2  P2 ( flare)+ ...+  ω n  Pn ( flare)

ω 1 ,  ω 2  ,...,  ω n    unrestricted

ω i = 1
i=1

n

∑

• Task: find ω1, ω2, …, ωn such that validation results are optimized

However: optimization means different things to different communities!

RECENT TREDS IN FLARE PREDICTION
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• Multivariate forecasting
• Ordering of predictors 

by means of a 
univariate Fisher 
ranking score 

• Machine-learning 
classifiers adopted

INDICATIVE RESULTS
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• Homogenizing the results of 
multiple flare prediction 
methods, using them with 
equal or non-equal weights 
for an ensemble forecasting

• Ensemble forecasting

Guerra et al., (2015) 
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JUDGING WHICH METHODS WORK: VALIDATION

• Existing methods are borrowed from terrestrial weather forecasting

• Two types of validation
• On binary (YES / NO) prediction output 
• On probabilistic (0 < p < 1) prediction output 

• Both are used in flare prediction



Binary validation: Flare (YES) or No Flare (NO) 

2 x 2 contingency table 
• TP : true positives  
• FN : false negatives 
• FP : false positives  
• TN : true negatives 

• Generalized skill score: 

SS =
score− scorereference

scoreperfect − scorereference

Table courtesy: Shaun Bloomfield
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VALIDATION: BORROWED BY TERRESTRIAL WEATHER FORECASTING
Tailoring according to different end user needs



Binary validation: Flare (YES) or No Flare (NO) 

2 x 2 contingency table 
• TP : true positives  
• FN : false negatives 
• FP : false positives  
• TN : true negatives 

• Generalized skill score: 

SS =
score− scorereference

scoreperfect − scorereference

Table courtesy: Shaun Bloomfield

• Heidke skill score (ref: random prediction): 

• Appleman skill score (ref: climatology [ν]): 

• True skill statistic (ref: weighting POD w. POFD): 

HSS =
2 TP +TN( )− N

N

TSS = POD − POFD

ApSS = TP − FP
N
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VALIDATION: BORROWED BY TERRESTRIAL WEATHER FORECASTING
Tailoring according to different end user needs



Slide courtesy: Shaun Bloomfield
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(SOME) BINARY FORECAST VERIFICATION METRICS



SOME INDICATIVE RESULTS 
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SOME INDICATIVE RESULTS 
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Example ROC curve (TSS vs. pthres)

max TSS



PROBABILISTIC VALIDATION
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Accept that a probability 0 < p < 1 is assigned to each prediction

SS = 1−
MSEforecast

MSEreference

Reliabillity diagram 
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Accept that a probability 0 < p < 1 is assigned to each prediction

SS = 1−
MSEforecast

MSEreference

• Correlate forecast probability with observed frequency
• Compare your skill against climatology (mean flaring rate within 

forecast window)

• Generalized skill score: 

SS = 1−
MSEforecast

MSEreference
MSE =  < o− p( )2 >

Reliabillity diagram 
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Accept that a probability 0 < p < 1 is assigned to each prediction

SS = 1−
MSEforecast

MSEreference

• Correlate forecast probability with observed frequency
• Compare your skill against climatology (mean flaring rate within 

forecast window)

• Generalized skill score: 

SS = 1−
MSEforecast

MSEreference
MSE =  < o− p( )2 >

• Brier skill score (reference: climatology): 

BSS = 1−
o− p( )2

o− o( )2

BSS=1

BSS=0

BSS —> ∞  

Reliabillity diagram 
BSS ∈ −∞,1( )
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FIRST EFFORT TO COMPARE METHOD PERFORMANCES ON COMMON DATA 
SETS

Recently published (Barnes et al., 2016)
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FIRST EFFORT TO COMPARE METHOD PERFORMANCES ON COMMON DATA 
SETS

Recently published (Barnes et al., 2016)

Typically a bit - but not much - better than climatology (> 0)  / quite often worse than climatology (< 0)   

Apparently worse BSS for scarcer 
(i.e., increasing flare class) events 
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Barnes et al., (2016) 

Generally, there is no 
method clearly 
outperforming the others 

FIRST EFFORT TO COMPARE METHOD PERFORMANCES ON COMMON DATA 
SETS



VALIDATION REQUIREMENTS
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• Balanced dataset of flaring and non-
flaring populations (correct flaring rates)
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flaring populations (correct flaring rates)

Flaring rates over solar cycle 23 (M1+, M5+, X1+, X5+)



VALIDATION REQUIREMENTS
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• Balanced dataset of flaring and non-
flaring populations (correct flaring rates)

Flaring rates over solar cycle 23 (M1+, M5+, X1+, X5+)

•  Large number of validation tests, using 
randomly chosen training and test sets 

Random selection of training (white) and testing (red dots) subsets



FROM PREDICTION METHODS TO OPERATIONAL FLARE FORECASTING 
SERVICES 

Oostende, November 18, 2016ESWW13 M. K. Georgoulis & R. Qahwaji

MDI	Continuum

MDI	Magnetogram

Imaging	
Algorithms Features	Detection Flare	Prediction

Sunspot	
Classification	Rules

Sunspot	Properties

Flare	Prediction	
Rules

Sunspot:	Detection	
&	Classification	
Flare:	Prediction

Association

Historical	
Features

Historical	
Events

Machine	
Learning Optimisation

ASAP

ASAP

ASAP’s	Output:	Flare	Monitor.	Visualisation	 of	
the	detected	 sunspots,	their	 classifications,	 and	

flare	probabilities.	

Besides the idea 
(prediction method), 
an infrastructure is 
also needed 

Complete automation 
means: 
• Ease of calculations 
• Ease of 

maintenance 
• Resilience 
• Modularity, for 

improvement
ASAP: The first flare prediction service utilizing machine learning methods 
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EXISTING FLARE PREDICTION SERVICES AROUND THE WORLD

Guerra et al., (2015) 



A NUMBER OF FORTHCOMING SERVICES 
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Europe, USA, Japan
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• Fact: Virtually all planned services rely essentially on multivariate predictors  
• Aphorism: validation, validation, validation … 



Consensus that reliable, automated solar flare prediction should be an asset of our SWE forecasting efforts

Multivariate forecasting, enabled by machine-learning and other methods (i.e., PCA, DA) seems to be the 
norm for future services — we can do it nowadays, can’t we? 

Customized, but always unbiased, validation : its importance cannot be stressed enough
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CONCLUSIONS

Can flares be predicted, however? 
• Quite likely, major flare prediction will remain probabilistic in the future
• But is this due to the nature of the problem, or due to lack of crucial information  or a flawed approach?
• How far along we can go remains TBS  — the goal of various flare forecasting efforts is to bring 

probabilistic flare prediction as close as possible to a binary (YES / NO one)

However, we need to raise Occam’s razor : how many / which parameters do we need for a sufficient 
forecasting? The answer will drive developments in our physical understanding of flare triggering
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CONCLUSIONS

Can flares be predicted, however? 
• Quite likely, major flare prediction will remain probabilistic in the future
• But is this due to the nature of the problem, or due to lack of crucial information  or a flawed approach?
• How far along we can go remains TBS  — the goal of various flare forecasting efforts is to bring 

probabilistic flare prediction as close as possible to a binary (YES / NO one)

However, we need to raise Occam’s razor : how many / which parameters do we need for a sufficient 
forecasting? The answer will drive developments in our physical understanding of flare triggering

Diverse expertise and ways of thinking are generally needed





All these issues and challenges referring to flare prediction …



All these issues and challenges referring to flare prediction …

… we haven’t even touched CME and SEP prediction yet!



BACKUP SLIDES


