

Solar active regions: flare and CME activity throughout their lifetimes

Lucie Green

UCL

H.H. Supp Geo. Jym Duc-c.8 altitude of the Th Some being degrees. It bis a first a milt I fam the final in lis many. Insprangent ъ. 2. once after the some to che . 1.0

Solar active regions

18-23 July 2014 – evolution of a small AR of 2.5 x 10^{21} Mx

Flare - CME relationship

Fig. 1. A unified model of flares: plasmoid-induced-reconnection model (Shibata et al., 1995). This is an extention of a classical model of eruptive solar flares, called the CSHKP model.

Shibata (1995)

Emergence phase characteristics

- Electric currents grow with the emerging flux (Leka et al., 1996)
- Magnetic tongues show the presence of twist in the emerging rope (López Fuentes et al., 2003)
 - Twist is relatively low, but it is evident in practically all ARs (Poisson, et al., 2015)
 - MHD simulations show such tongues (e.g. Archontis and Hood, 2010)
- Photospheric field distribution reflects the nature of the emerging flux

Luoni et al. (2011)

More complex emergence: e.g. AR 11158

Chintzoglou et al., 2013

Sub-surface structure of AR 11158

Chintzoglou et al., 2013

≜UCL

Emerging flux as flare & eruption trigger

- Low-level flare activity starts quickly as current sheets form between emerging structure and pre-existing field, and within the emerging field itself
- Flare activity associated to factors such as free mag. energy, complexity, growth rate
- Favourably orientated bipole emergence could trigger eruption:
 - quiescent filament eruptions (Feynman and Martin, 1995)

Decay phase characteristics

- Sunspots break up and flux gets redistributed over a larger and larger area
- Magnetic structure simplifies and becomes more bipolar
- Overall rotation of the bipole may occur
- The flux tube of the active region apparently gets disconnected from its toroidal roots

¹UCL

Decay phase: physical processes at play van Diel Gesztelyi et al. (2002) van Driel Gesztelyi et al. (2003)

- Supergranular flows
- Flux cancellation at PILs
- Differential rotation

Flux cancellation

- Natural part of active region evolution during decay phase
- Can also take place during emergence phase

[•]UCL

Timescales of emergence and decay phases

 Active regions emerge in < 5 days

Lifetime: t_{AR} (days) = 15 Φ / 10²¹ Mx

- where Φ is the total magnetic flux of the active region. Approx. 5 months for a major AR (Schrijver & Title, 1999)
- 70 94% of their lives decaying (Harvey, 1993)

Dacie et al., 2016

CME activity in small bipolar active regions

- Study of 20 bipolar active regions, from first observation of flux emergence over a few days (Yardley et al., 2017 in prep)
- Different CME classifications
 - eruption of pre-existing structure
 - formation & eruption of structure
- 14/20 were associated with a CME during the time studied
- CMEs occur during emergence and decay phase

X (overseon)

Eruptive magnetic field formation I

X (overaged)

R (reason)

(c) (b) (a) D F (f Yardley et al., in prep (e) (d) Green, Kliem & Wallace, 2011; Savcheva et al., 2012; Green & Kliem, 2014 5-Dec-2007 19:09 UT 5-Dac-2007 02:29 UT 6-Dec-2007 03:51 UI 6-Dec-2007 15:50 UT -50 -104 -150 -150 -180 154 -200-324-300 -360 -500-400 -350 -250 -200-150-100-150-100 -50

X (areseen)

van Ballegooijen & Martens, 1989

Application: emergence phase of complex active regions

- Interaction between emerging bipoles in complex region
- Strong flux emergence, shearing, rotation and presumably flux cancellation.

12 Feb 2011, 12:00 UT

14 Feb 2011, 11:00 UT

14 Feb 2011, 23:30 UT

AR 11158

This flux rope apparently formed prior ~ 2 hours before eruption

Application: decay phase of bipolar active regions

2) Increasing shear 3) Double-J formation

4) Continuous S

Evolutionary stages in isolated bipolar regions

Driven by photospheric field evolution

Observations show these flux ropes form on a timescale of \sim few days up to 14 hours prior to their eruption

UCL

Eruptive magnetic field formation II: Hot flux ropes

Seen at the solar limb - line-of-sight is ~parallel with the flux rope axis

Fig. 1. A unified model of flares: plasmoid-induced-reconnection model (Shibata et al., 1995). This is an extention of a classical model of eruptive solar flares, called the CSHKP model. Patsourakos, Vourlidas, Stenborg (2013): Flux rope formed on a timescale of 20 minutes around 7 hours prior to its eruption

Patsourakos, Vourlidas, Stenborg (2013)

Eruptive magnetic field formation II

Flux rope formed at least 2 hours prior to its eruption

James et al. (submitted)

Lucie Green - active regions, flares and CMEs - Flarecast workshop 2017

¹UCL

James et al. (submitted)

UCL

James et al. (submitted)

Flux rope forces

Image courtesy of B. Vrsnak

Flux cancellation studies: force balance

Modelling Study	Φ	Observational Study	Φ
Bobra et al (2008)	1:9	Green, Kliem, Wallace (2011)	1:1.5
Savcheva and van Ballegooijen (2009);	1:6	Yardley et al. (2016)	1:0.9
Savcheva et al-2012	1:1.5	Yardley et al. (2017, in prep)	1:2 1:3.5

UCL

Simulation by B. Kliem

Why didn't AR 12192 produce CMEs?

- 6 X-class flares but no CMEs
- High peak flux (~16x10²² Mx)
- Sun et al. (2015)
 - Weakly non-potential in the AR core
 - Strong field overlying the AR core
- There is a separation of the main positive and
 negative may
 No systematic flux cancellation/coronal
 reconnection therefore no flux rope
 - Small bipoles the 'serpenti emergence p
- Overall one main bipole, with at least 2 new bipolar emergences on the periphery of the sunspot region or near centre but later in time.

