

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Flare forecasting: a beginners guide

Sophie A. Murray First FLARECAST User Workshop 2017-01-12

Flares

a reminder..

Forecast Types

- Continuous
 - Soft X-ray flux over the next 24 hours.
- Probabilistic
 - There is a 20% chance of an M-class flare in the next 24 hours.
- Yes/no
 - There will be NO M-class flare in the next 24 hours.

Making a forecast

- Identify property related to flaring
- Parameters to characterise this property

• Method to convert parameter values to a forecast

• Method to quantify the result

Some operational methods

Australian Government

Royal Observatory of Belgium

NWRA DAFFS

Korea Meteorological **KYUNG HEE** Administration UNIVERSITY

The University of Dublin www.SelarMenitor.org

Active Regions

a reminder..

Active Region Classification

McIntosh

- General distribution and size
- Primary penumbra shape
- Interior spot compactness

Active Region Classification

McIntosh

Mt Wilson

unipolar

bipolar

mixing of polarities opposite polarity umbrae within one penumbra

MOSWOC Solar Synoptic Map

Calculating the probability

- Historical database of several decades of active region classifications and solar flare events
 - Calculate average flare rate for each classification
- Probability of flare occuring in next 24 hours is calculated from a simple equation using this rate

Combine each active region's probability to calculate a full-disk probability

Issued flare forecasts

X Ray Flares	Level	Past 24 Hours (Yes/No)	Day 1 (00-24 UTC)	Day 2 (00-24 UTC)	Day 3 (00-24 UTC)	Day 4 (00-24 UTC)
Probability			(%)	(%)	(%)	(%)
Active	R1-R2 M Class	Yes	80	80	80	80
Very Active	R3 to R5 X Class	No	35	35	35	35

Other operational methods

Australian Government

Royal Observatory of Belgium

NWRA DAFFS

KYUNG HEE Administration UNIVERSITY

Trinity College Dublin, The University of Dublin

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Are they any good? Which one is the best?

Verification

Yes/no forecasts - skill scores

	Forecast flare	Forecast no flare	
Observed flare	True Positive (hit)	False Negative (miss)	
Observed no flare	False Positive (false alarm)	True Negative (correct negative)	

$$Accuracy = \frac{TP + TN}{TP + FN + FP + TN}$$

$$Skill = \frac{A_{forecast} - A_{reference}}{A_{perfect} - A_{reference}}$$

Verification

Probabilistic forecasts - Reliability diagram

Verification

Probabilistic forecasts - ROC curve

Scientific Results

All-Clear Workshop

Georgoulis & Rust 2007 Colak & Qahwaji 2008, 2009 Yuan et al. 2010, 2011 Falconer et al. 2008 Leka & Barnes 2003a Schrijver 2007 McAteer et al. 2010 Barnes et al. 2010 Barnes et al. 2005 Higgins et al. 2011 Wheatland 2004 Gallagher et al. 2002; Bloomfield et al. 2012

'... no one method clearly outperformed all others'

'For M-class flares and above....with no participating method proving substantially better than climatological forecasts'

Operational Results

Human vs machine

False Alarm Rate

Trinity College Dublin, The University of Dublin

Hit Rate

Guerra et al

Trinity College Dublin

Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

What can we do?

Operations NASA/CCMC Flare Scoreboard

http://ccmc.gsfc.nasa.gov/challenges/flare.php

Ensembles

Human vs machine

Ensembles

Hit Rate

False Alarm Rate

Guerra et al

Trinity College Dublin, The University of Dublin

Flare Likelihood And Region Eruption ForeCASTing

FLARECAST

Flare Likelihood And Region Eruption foreCASTing THE FULLY AUTOMATED SOLAR FLARE FORECASTING SYSTEM A Horizon2020 PROTEC (Protection of our Assets in Space) Research and Innovation Action

http://www.flarecast.eu/

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath

The University of Dublin

