

An Introduction to FLARECAST

FLARECAST Second Users Workshop

Manolis K. Georgoulis Project Coordinator, FLARECAST RCAAM of the Academy of Athens

FLARE CAST

29 November 2017

H2020-PROTEC-2014 RIA; Project No.: 640216

FLARECAST trivia

- Funded by Horizon 2020 PROTEC-1-2014: Space Weather (Grant Agreement No. 640216)
- Period of performance: January 2015 December 2017 (3 years)
- A Max budget: 2.416 MEUR
- A Consortium of nine (9) institutes in six countries: AA (GR), TCD (IE), UNIGE (IT), CNR (IT), CNRS (FR), UPSud (FR), FHNW (CH), Met Office (UK), UNN (UK)
- Five-member Steering Committee: N. Hurlburt (US, Chair),
 D. Biesecker (US), G. Barnes (US), S. Villa (IT), P. Russo (NL)

FLARECAST Second Users Workshop

What is FLARECAST?

FLARECAST is an EC H2020 project aiming to develop an advanced solar flare prediction system based on automatically extracted physical properties of solar active regions, coupled with state-of-the-art solar flare prediction methods and validated using the most appropriate forecast verification measures.

FLARECAST top-level objectives:

- To understand the drivers of solar flare activity and improve flare prediction
- To provide a globally accessible flare prediction service that facilitates expansion
- To engage with space weather end users and inform policy makers and the public

So... Why do we need advance flare prediction? FLARE CAST $t_0 + 1 day$ $t_0 + 8 \min$ $t_0 + 20 min$ Arrival of Arrival of first Arrival of CME-shock flare-accelerated hard (X-, y-) Arrival of CME itself accelerated particles ray photons particles (if any) Solar $t_0 + (2 - 4) days$ flare

- \circ There is no early warning for flare X- and γ -ray photons
- There is a slim (few min) early-warning window for possible flare-only particulate
- From the flare class, one can effectively proceed to CME prediction for major flares
- Flares are the primary agents for solar radio bursts
- Dot-connecting exercises (from predicted flare location, surroundings, orientation) can be made to assess possible eruption impact and combine with other SWx prediction efforts (CMEs, SEPs)

How do we do it - FLARECAST Architecture FLARE CAST Step 1: Data Step 2: Feature Step 3: Prediction Step 4: Data acquisition property extraction training / execution verification Flare prediction Prediction algorithms Feature Config DB (training) Property Data Loader **HMI** Files Property DB Extractor \mathbf{J} Flare Forecast prediction Prediction verification algorithms Database Staging algorithms (execution) Area Infra Management Infrastructure Config DB Legend ----> read

FLARECAST Second Users Workshop

FLARECAST steps and data types in more detail • Four steps; three data types:

• Step 1: Data acquisition

External data:

- SDO / HMI NRT SHARPs
- NOAA / SWPC SRS data
 - Active region numbers
 - AR locations
 - Flare occurrences

FLARECAST Second Users Workshop

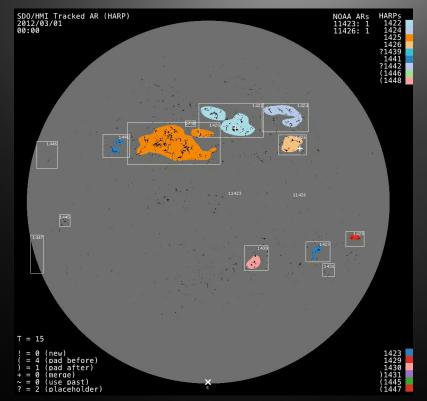
- Step 2: Feature property extraction
 Step 3: Prediction training / execution
- Step 4: Forecast verification

Science data:

- Extracted properties
- Prediction algorithm config.
- Predictions
- Validation

cf. Shaun's talk

Algorithm management


Infrastructure data:

Workflow management

cf. André's talk

Step 1: Data acquisition

FLARECAST Second Users Workshop

SDO / HMI data

- SHARP vector magnetograms NRT (hmi.sharp_720s_nrt)
- LOS magnetograms (hmi.M_720s)
- SHARP vector magnetograms definitive (hmi.sharp_720s)
- □ SRS active region (SWPC)

(YYYY_events.tar.gz)

FLARECAST

□ Flare association (GOES)

Step 2: Feature property extraction

Pretty much everything proposed as promising for flare prediction over the past 25 years

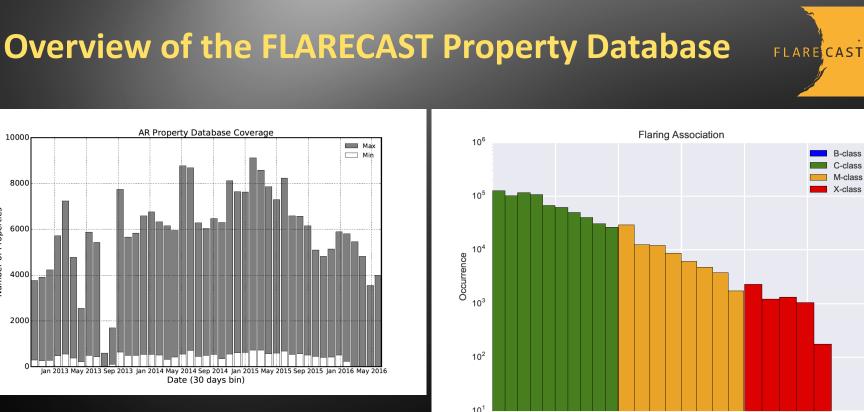
SWPC			(To do / In progress /	LOS magnetograms			
catalogues			Under testing / Delivered)	Details Effective connected magnetic field strength (B _{eff}) (Georgoulis AA Delivered	Delivered		
Details	Solar Region Summary properties	TCD	Delivered	Details	Fractal dimension (Georgoulis, 2012)	AA	Delivered
Details	GOES X-ray events	TCD	Delivered	Details	Multi-fractal structure function $s(q)$ inertial range index k (Georgoulis, 2012)	AA	Delivered
				Details	Fourier power spectral index (Guerra et. al., 2015)	TCD	Delivered
Vector magnetograms				Details	CWT power spectral index (Hewett et. al., 2008)	TCD	Delivered
Details	SHARP properties (Bobra et al. 2014)	TCD	Delivered	Details	Generalised correlation dimension (Georgoulis, 2012)	AA	Delivered
				Details	Holder exponent h (Conlon et al., 2010)	AA	Delivered
Details	Magnetic helicity injection rate (Berger & Field 1984)	TCD	Delivered	Details	Hausdorff dimension D(h) (Conlon et al., 2010)	AA	Delivered
Details	Magnetic energy injection rate (Kusano et al. 2002)	TCD	Delivered		WTMM (Conion et al., 2010)	TCD	Under testing (further investigated in
Details	Non-neutralized currents (Georgoulis et al., 2012)	AA	Delivered				WP6)
Details	Flow field characteristics (Deng et al. 2006; Wang et al. 2014)	TCD	Delivered	Details	Decay index (Zuccarello et al. 2014)	TCD	Delivered
botano	Magnetic bipolar feature characteristics	TCD	Under testing (further investigated in	Details	Magnetic polarity inversion line characteristics (Mason & Hoeksema 2010)	TCD	Delivered
	magnetic bipolar reature characteristics	100		Details	3D magnetic null point (Greene 1992)	TCD	Delivered
Intensity images				Details	R (Schrijver 2007)	TCD	Delivered
		700					
	Flow field characteristics		Under testing (further investigated in VP6)	Details	LWL _{SG} (Falconer et al. 2008) *	TCD	Delivered
				Details	Ising energy (Ahmed et al. 2010)	AA	Delivered

Details

Details

WG_M and S_{Lf} (Korsos et al. 2015)

Magnetic helicity injection rate proxy (Park et al. 2013)


More than 100 features (predictors) for each magnetogram!

Delivered

Delivered

AA

TCD

Number of properties per month

FLARECAST Second Users Workshop

10000

8000

6000

4000

2000

0

Number of Properties

Flare association

-5.5

-5.0

-6.0

Oostende, BE, 29 November 2017

-3.5

-3.0

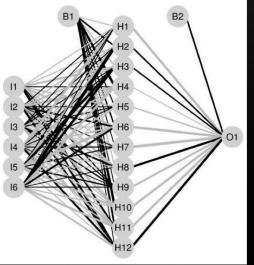
-4.0

-4.5 Log GOES FLux Peak Intenisty C-class

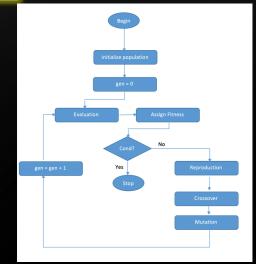
Step 3: Prediction training / execution

A total of 22 prediction algorithms tested, most of them in points in time and some in timeseries
Supervised learning

		Supervised learning				
Statistical	atistical		Discrim	ninant analysis		
				yer perceptron with back-propagation (point-in-		
	Poisson (McIntosh point-in-time)		time)			
	Poisson (McIntosh 24-hour evolution)		Multi-la	Multi-layer perceptron with back-propagation (time series		
	Probit regression		Radial	idial basis function networks (point-in-time)		
	Logit regression		Radial	Radial basis function networks (time series)		
				Recurrent neural network with evolutionary algorithm (point-in-time)		
	Linear regression		u -			
	Bayesian binary quantile regression with lasso		Recurr (time s	ent neural network with evolutionary algorithm eries)		
Unsupervised learning			Suppor	rt vector machine (point-in-time)		
			Support vector machine (time series)			
	k-means clustering	Time series				
	Probabilistic k-means (Fuzzy C-means) clustering	preprocessing				
			Discrete Wavelet Transform			
FLARECAST Seco			Principal Component Analysis			


Categories of FLARECAST prediction algorithms

Statistical


- Supervised learning
- Unsupervised learning
- Timeseries analysis
 - Non machine-learning
 - Machine-learning
 - Timeseries (not implemented in this release of FLARECAST

Machine-learning methods

- Standard
- \circ Advanced
- Innovative

Typical example of multi-layer perceptron

FLARE CAST

Typical flowchart of a genetic algorithm

Step 4: Forecast verification – binary

Binary validation: Flare (YES) or No Flare (NO)

	Forecast Flare	Forecast No-flare
Observed Flare	TP	FN
Observed No-flare	FP	TN

SS =

2 x 2 contingency table

- TP : true positives
- FN : false negatives
- FP : false positives
- TN : true negatives

Generalized skill score:

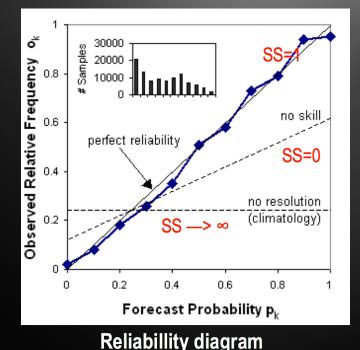
 $\frac{||\mathbf{score} - \mathbf{score}_{ref}||}{|\mathbf{score}_{perfect} - \mathbf{score}_{ref}||}$

Different skill scores for different purposes:

• Heidke (HSS - ref. random prediction) $HSS = \frac{2(\mathrm{TP} + \mathrm{TN}) - N}{2}$ Appleman (HSS - ref. climatology) $ApSS = \frac{TP - FP}{TP}$

True skill statistic (TSS) 0

TSS = POD - POFD

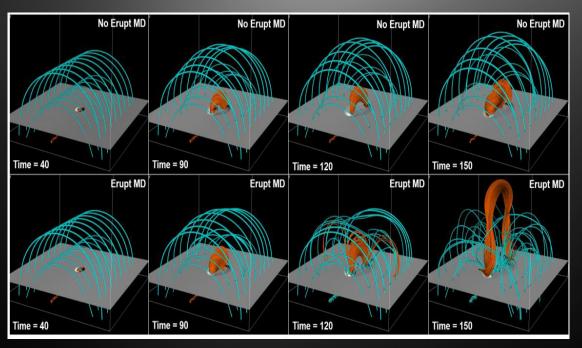

Step 4: Forecast verification – probabilistic

0

0

0

A probability 0 < p < 1 is assigned to each prediction



FLARECAST Second Users Workshop

- Correlates forecast probability with observed frequency Reliability, skill, resolution $MSE_{forecast}$ SS = 1Generalized skill score: $\overline{\mathrm{MSE}}_{ref}$ MSE (o_i) Brier skill score: 0 $\bar{o} \equiv \{0, 1\}$ $\mathrm{MSE}(ar{o},p)$ BSS = \tilde{o} : climatology
 - Oostende, BE, 29 November 2017

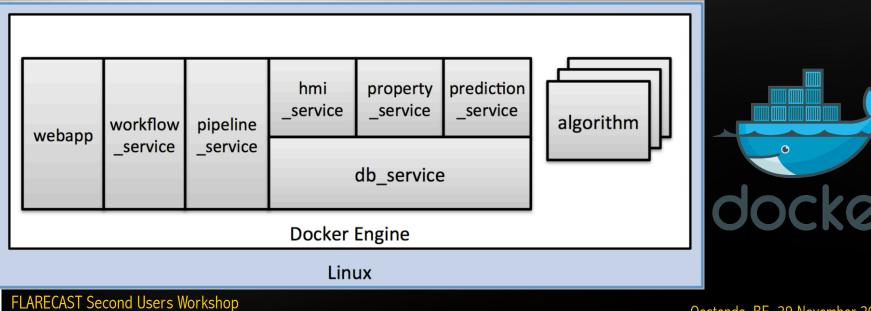
FLARE CAST

FLARECAST Science: explorative research

Understand solar magnetic eruptions

- Improve future flare prediction, involving use of timeseries
- Investigate suitability of forecast window and latency
- □ Advance CME prediction

Study of eruptive flares in synthetic MHD configurations


FLARECAST Second Users Workshop

Oostende, BE, 29 November 2017

FLARE CAST

FLARECAST top-level objectives: Technology

- □ API accessible databases
- Open-source Architecture based on Docker engine and containers
- Pick-and-mix installation

FLARE CAST

FLARECAST top-level objectives: communication

Edit

...

C Share

Communicating with the scientific community

http://flarecast.eu/research/publications

• Watching

Pages / Management

/ Publications and Conferences 🦳 🔒 🔘

FLARECAST Publication Plan

Created by D. Shaun Bloomfield, last modified by Etienne Pariat on Mar 31, 2017

At least seventeen (17) envisioned refereed papers, of which:

□ Six (6) are already published

Three (3) are under review

FLARECAST Second Users Workshop

Eight (8) are in preparation

☆ Favourite

Al , either in open-access journals or in ArXiv

FLARECAST top-level objectives: communicationCommunicating with industry and government

http://flarecast.eu/industry/first-stakeholder-workshop

First Stakeholders
 Workshop, Met Office
 12-13 January 2017

FLARECAST

Second Users
 Workshop, ESWW14,
 29 November 2017

http://flarecast.eu/secondstakeholder-workshop

FLARECAST Second Users Workshop

http://flarecast.eu/outreach-activities

FLARECAST top-level objectives: communication FLARECAST @FLARECAST EU Communicating with the public Il Secolo XIX, Genova, 13 September 2016.

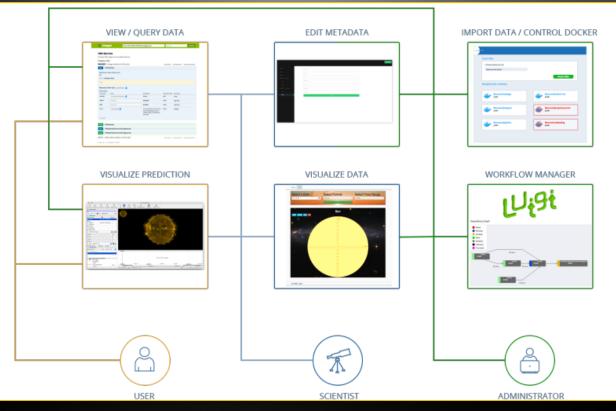
EU Researchers Night, Athens, 30.09.2017

EU Researchers Night, TCD, Dublin, 30.09.2016

AA, Athens, 13.11.2017 http://flarecast.eu/outreach-activities

Science Café, Zurich, 11.11.2016

Università e Cnr stanno creando una squadra di tecnici e scienziati internazional


Ricercatori a caccia di tempeste solari

20 MARTEDI 13 SETTEMBRE 2016 **GENOVA** l futuro è in città

FLARECAST service: how it will work

FLARECAST Second Users Workshop

- Three different levels of service inspection:
 - Administrator: control, workflow manager
 - Scientist: edit metadata; visualize data
 - End user: view / query data; visualize prediction

□ FLARECAST is arguably the most systematic, cost- and effort-intensive solar flare prediction project worldwide at this time.

- The project has multi-faceted objectives that aim to understand and forecast the flaring phenomenon, at the same time raising awareness in the scientific community, stakeholders and the public about the challenge and benefit of the effort.
- □ FLARECAST data, codes and infrastructure are fully and openly accessible worldwide and can be used to avoid effort duplication in future SWx forecasting efforts.
- FLARECAST will be finalized in the next few months. Any idea, comment or suggestion that can be taken into account at this point is welcome.

