
The Role of Community Solar Flare Predictions in Space Weather Forecasting

M. Leila Mays and the CCMC team

November 2017 ESWW14

http://ccmc.gsfc.nasa.gov

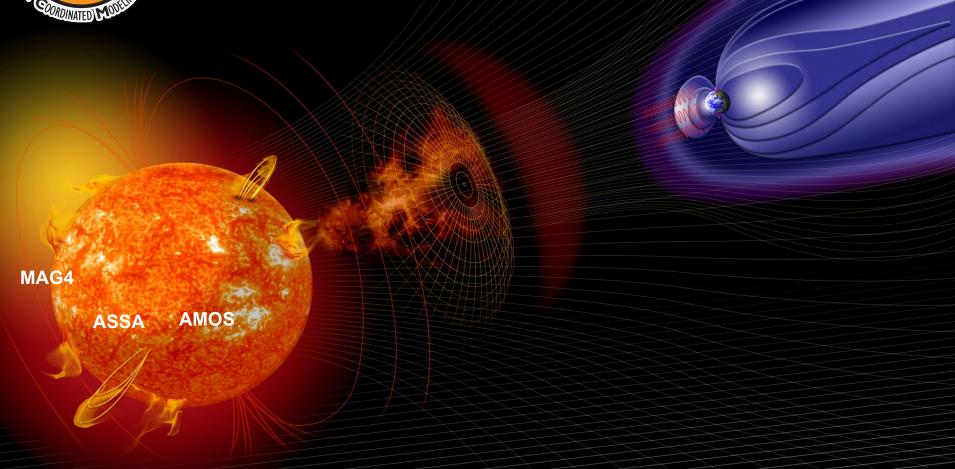
Models at CCMC

SWMF.SC+EEGGL+CME EEGGL AWSoM **PFSS.Petrie PFSS.Macneice** PFSS,Luhmann ANMHD UMASEP MAG4 AMOS ASAP ASSA NLFFF SRPM **WSA** SNB3GEO MAGIC GCR BON NOVICE **NAIRAS** CARI-7

WSA-ENLIL WSA-ENLIL+Cone WSA-ENLIL+EPREM WSA-ENLIL+SEPMOD REIeASE PREDICCS **EXO Solar Wind** EMMREM CORHEL **Heltomo SMEI Heltomo IPS** BRYNTRN DBM SWMF.SH

LFM-TING **GUMICS** LFM-MIX GIC **OpenGGCM+CTIM** SWMF+RCM+deltaB SWMF+RCM SWMF+RCM+RBE SWMF+RCM+CRCM **LFM-MIX-TIEGCM** LANLstar WINDMI Tsyganenko **IGRF** Weigel-deltaB **PS VP** AACGM Apex AMPS VPIC PAMHD **PIC-Hesse**

TIE-GCM SAMI-3 SAM **GMAT** CTIPe **IDA4D USU-GAIM** RCM SWACI-TEC Fok.CIMI **ABBYNormal** Fok.RBE NRLMSISE **UPOS RB AE-8/AP-8** GITM **AE-9/AP-9** PBMOD VERB **TRIPL-DA** Weimer IE Weimer-deltaB IRI **JB2008** IMPACT DTM **COSGROVE-PF Ovation Prime**


Corona Heliosphere Magnetosphere Local Physics Magnetosphere

DIPS

Inner Magnetosphere Ionosphere/Ther mosphere

Models at CCMC

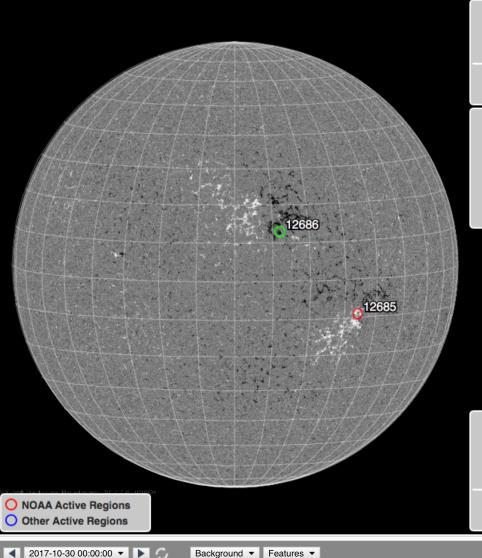
Corona Heliosphere Magnetosphere Local Physics Inner Ionosphere/Ther Magnetosphere mosphere

CCMC community scoreboards

- Fostering world-wide community validation projects that ultimately help researchers improve their CME, flare, and SEP forecasts and determine their usefulness.
- Allow a consistent real-time comparison of various operational and research forecasts. Complementary to non-real time model assessments such as the International Forum for Space Weather Capabilities Assessment.
- The flare and SEP system is **automated** such that model developers can routinely upload their predictions.
- Forecast data is parsed and stored in a database accessible to anyone via an API.

Flare Scoreboard

https://ccmc.gsfc.nasa.gov/challenges/flare.php


Currently registered models and particpating partners:

AMOS Automatic McIntosh-based Occurrence probability of Solar activity	ASAP Automated Solar Activity Prediction		ASSA Automatic Solar Synoptic Analyzer
BoM Data-driven probabilistic flare forecast model	MAG4 MAG4 LOS and Vector Magnetogram Forecasts (four products)	THE UNIVERSITY OF ALABAMA IN HUNTSVILLE	Met Office Space Weather Forecast (full disk) and Sunspot Region Summary
SIDC SIDC human operator moderated K K K K Royal Observatory of Belgium	SolarMonitor.org Flare Prediction System	Trinity College Dublin	UFCORIN Universal Forecast Constructor by Optimized Regression of INputs

Flare Scoreboard

https://ccmc.gsfc.nasa.gov/challenges/flare.php

N13W12 Region Flare Predictions (24 hour)				
AMOS_v1	C+: 3%	M+: 0%	X: 0%	
NOAA_1	C: 5%	M: 1%	X:1%	
Averages	C: 5%	M: 1%		
Averages	C : 3%	M+: 0%	X:1%	

Region Location Details

AMOS_v1

NOAA AR#: 12686 (N13W12), R: 0.36, Alpha AMOS_v1 AR#: 1 (N13W12, 2017-10-30 00:00:00.0)

Full Disk Predictions (24 hour)

C: 39%

C+: 5%

C: 39%

C+: 5%

M: 6%

M+: 0%

M: 1%

M: 3%

M+: 0%

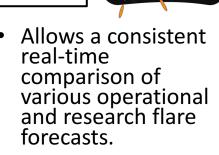
X:0%

X:0%

X: 1%

X:0%

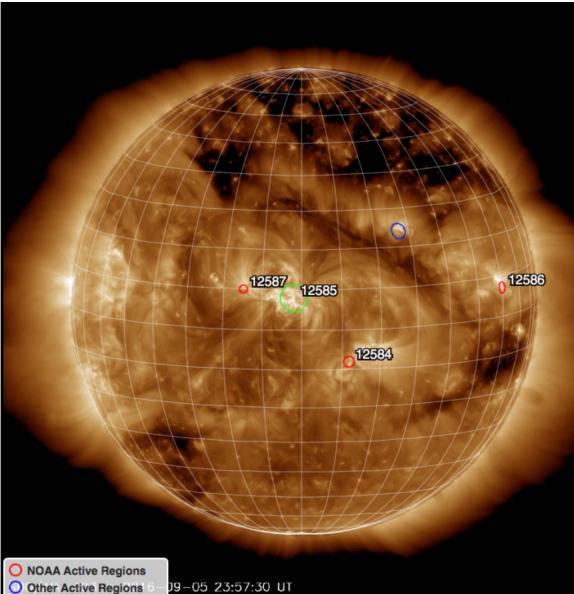
NOAA_1


ASSA 24H 1

AMOS_v1

NOAA 1

Averages


NOAA AR#: 12686 (N13W12), R: 0.36, Alpha

- Automated system; model developers can routinely upload their predictions to an anonymous ftp
- Forecast data is parsed and stored in a database which accessible to anyone via an API
- This project is led by Sophie Murray (TCD) and SIDC. The planning group includes expert scientists as well as operational space weather prediction centers.

Flare Scoreboard

N08E02 Region Flare Predictions (24 hour)

ASAP_1 BoM_flare1 NOAA_1 AMOS_v1	 	X:1% X:1%
Averages	 M : 14% M+: 10%	X:2%

Region Location Details

ASAP_1 ASAP_1 AR#: 2 (N06E02, 2016-09-06 00:00:00.0)

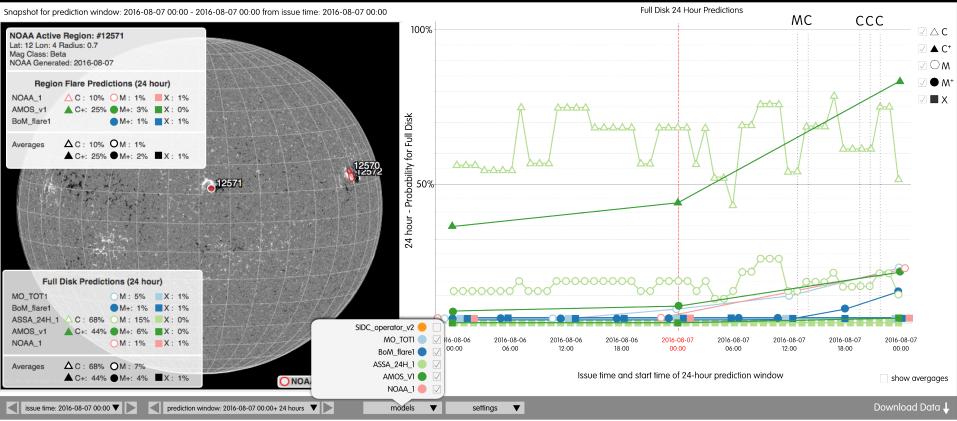
BoM_flare1 NOAA AR#: 12585 (N08E02), R: 2.35, Beta

NOAA_1 NOAA AR#: 12585 (N08E02), R: 2.35, Beta

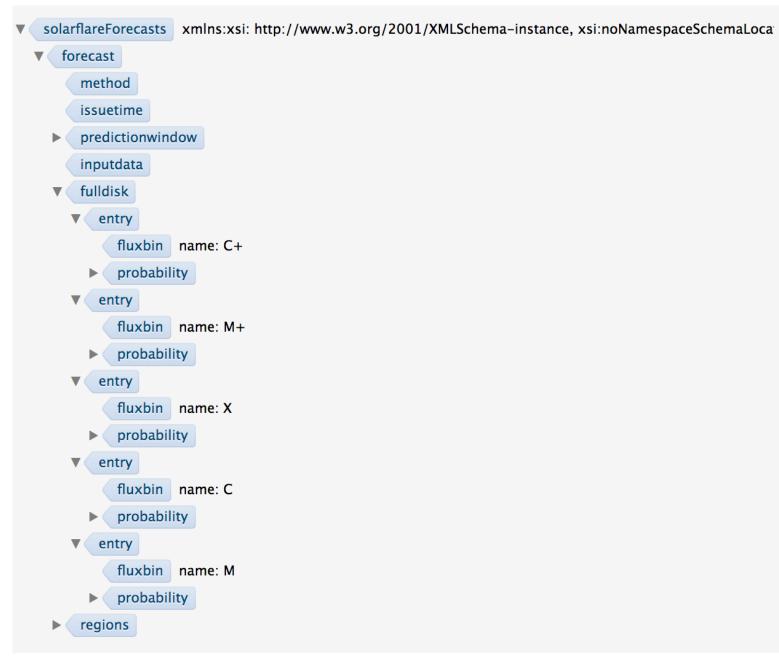
AMOS_v1 NOAA AR#: 12585 (N08E02), R: 2.35, Beta AMOS_v1 AR#: 0 (N08E02, 2016-09-06 00:00:00.0)

Full Disk Predictions (24 hour)

BoM_flare1 ASSA_24H_1 AMOS_v1 NOAA_1 UFCORIN_1 MO_TOT1	C : 81% C+: 64% C+: 43%	M : 29% M+: 17% M : 10%	X: 1% X: 6% X: 2% X: 1% X: 0% X: 0%
Averages	C : 81% C+: 53%	M : 15% M+: 7%	X: 2%



Flare Scoreboard: Future


https://ccmc.gsfc.nasa.gov/challenges/flare.php

Solar Flare Scoreboard

The full disk and active region flare forecasts can currently be viewed on an interactive display overlaid on an SDO/AIA or HMI image of then Sun and will be dynamically paired with a graph of flare probability vs. time (coming soon)

https://ccmc.gsfc.nasa.gov/challenges/flareinfo/flareforecast_template_v1.0_example.xml

Solar Flare Scoreboard API - CATALOG

צרי אַ

https://iswa.ccmc.gsfc.nasa.gov/IswaSystemWebApp/flarescoreboard/hapi/catalog

```
"HAPI": "1.1",
 "catalog": [
   "id": "SIDC Operator FULLDISK",
   "title": "SIDC human operator moderated",
   "type": "FULLDISK",
   "version": "2"
 },
   "id": "SIDC Operator REGIONS",
   "title": "SIDC human operator moderated",
   "type": "REGIONS",
   "version": "2"
 },
   "id": "MO TOT1 FULLDISK",
   "title": "Met Office",
   "type": "FULLDISK",
   "version": "1"
 },
   "id": "BoM flare1 FULLDISK",
   "title": "Australian Bureau of Meteorology, Space Weather Services Flarecast automatic
forecast",
   "type": "FULLDISK",
   "version": "1"
 },
 ...
```

Solar Flare Scoreboard API - INFO

https://iswa.ccmc.gsfc.nasa.gov/IswaSystemWebApp/flarescoreboard/hapi/info?&id=NOAA_1_FULLDISK

```
"HAPI-API": "1.1",
"parameters": [
 "fill": null,
 "length": 22,
 "name": "start window",
 "type": "isotime",
 "units": "UTC"
},
 "fill": null,
 "length": 22,
 "name": "end window",
 "type": "isotime",
 "units": "UTC"
},
 "fill": null,
 "length": 22,
 "name": "issue time",
 "type": "isotime",
 "units": "UTC"
},
```

```
{
   "fill": null,
   "name": "M".
   "type": "double",
   "units": "probability"
  },
   "fill": null,
   "name": "X",
   "type": "double",
   "units": "probability"
 "startDate": "2016-05-
02T00:00:00.0",
 "status": {
  "code": 1200,
  "message": "OK"
 },
 "stopDate": "2017-11-
01T00:00:00.0"
```

Input Parameter: id (required)

JSON returned: startDate, stopDate parameters: (start_window, end_window, M,C,X)

The Heliophysics Application Programmer's Interface (HAPI) data access specification is a RESTful API and streaming format specification for delivering digital time series data. The HAPI specification describes a minimum set of capabilities needed for a server to allow access to the time series data values within one or more data collections.

Solar Flare Scoreboard API – DATA (JSON)

ירי אַן י

https://iswa.ccmc.gsfc.nasa.gov/IswaSystemWebApp/flarescoreboard/hapi/data? &id=NOAA_1_FULLDISK &time.min=2017-10-25 00:00:00.0 &time.max=2017-10-31 00:00:00.0 &format=json

```
"HAPI": "1.1",
"data": [
  "2017-10-25T00:00:00.0",
 "2017-10-26T00:00:00.0",
 "2017-10-22T22:00:00.0",
 0.1,
 0.01
 ],
  "2017-10-25T00:00:00.0",
 "2017-10-26T00:00:00.0",
 "2017-10-24T22:00:00.0",
 0.01.
 0.01
 1,
  "2017-10-26T00:00:00.0",
 "2017-10-27T00:00:00.0",
 "2017-10-24T22:00:00.0",
 0.01,
 0.01
 ],
  "2017-10-27T00:00:00.0",
 "2017-10-28T00:00:00.0",
 "2017-10-24T22:00:00.0",
 0.01,
 0.01
 ] · · · ,
```

"format": "json", "parameters": ["fill": null, "length": 22, "name": "start window", "type": "isotime", "units": "UTC" "fill": null, "length": 22, "name": "end window". "type": "isotime", "units": "UTC" "fill": null, "length": 22. "name": "issue time", "type": "isotime", "units": "UTC" "fill": null, "name": "M", "type": "double", "units": "probability" },

Input Parameter: id (required) time.min (required) time.max(required) format(csv or json) parameters (optional)

JSON returned: Data + Info

Solar Flare Scoreboard API – DATA (CSV)

https://iswa.ccmc.gsfc.nasa.gov/IswaSystemWebApp/flarescoreboard/hapi/data? &id=NOAA 1 FULLDISK &time.min=2017-10-25 00:00:00.0 **CSV returned:** &time.max=2017-10-27 00:00:00.0 Data + Info &format=csv

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

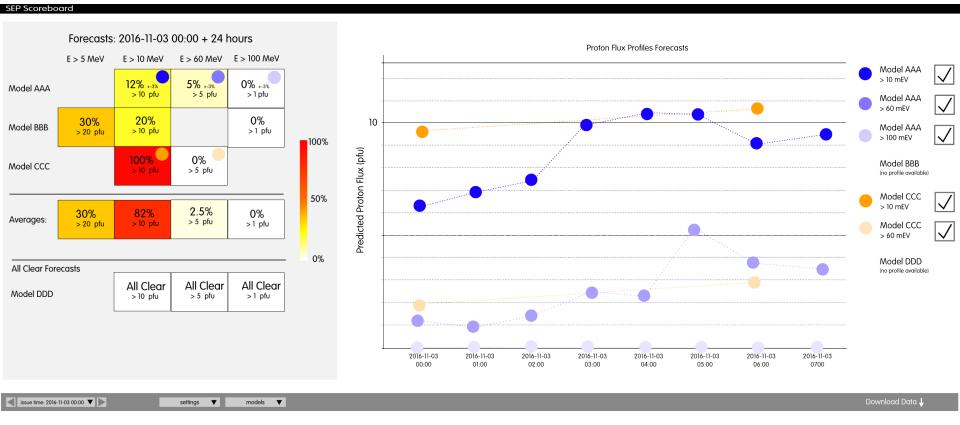
#

#{ "HAPI": "1.1", "format": "csv", "parameters": [# { "fill": null, "fill": null, # "name": "X", "length": 22, "type": "double", "name": "start window", "units": "probability" # "type": "isotime", # } "units": "UTC" # 1, }, # "startDate": "2016-05-02T00:00:00.0", # "status": { "fill": null, # "code": 1200, "length": 22, # "message": "OK" "name": "end window", **#** }, "type": "isotime", # "stopDate": "2017-11-02T00:00:00.0" "units": "UTC" #} }, 2017-10-25T00:00:00.0,2017-10-26T00:00:00.0,2017-10-22T22:00:00.0,0.01 { 2017-10-25T00:00:00.0,2017-10-26T00:00:00.0,2017-10-24T22:00:00.0,0.01 "fill": null, 2017-10-26T00:00:00.0,2017-10-27T00:00:00.0,2017-10-24T22:00:00.0,0.01 "length": 22, 2017-10-27T00:00:00.0,2017-10-28T00:00:00.0,2017-10-24T22:00:00.0,0.01 "name": "issue time", 2017-10-26T00:00:00.0,2017-10-27T00:00:00.0,2017-10-25T22:00:00.0,0.01 "type": "isotime", 2017-10-27T00:00:00.0,2017-10-28T00:00:00.0,2017-10-25T22:00:00.0,0.01 "units": "UTC" 2017-10-28T00:00:00.0,2017-10-29T00:00:00.0,2017-10-25T22:00:00.0,0.01 }, 2017-10-27T00:00:00.0,2017-10-28T00:00:00.0,2017-10-26T22:00:00.0,0.01 { 2017-10-28T00:00:00.0,2017-10-29T00:00:00.0,2017-10-26T22:00:00.0,0.01 "fill": null, "name": "M", "type": "double", "units": "probability" },

SEP Scoreboard

https://ccmc.gsfc.nasa.gov/challenges/sep.php

- Planning for the SEP Scoreboard has started (led by Mark Dierckxsens at BIRA-IASB and the Mike Mash at UK Met Office)
- Builds upon the flare scoreboard and CME arrival time scoreboard
- Automated system; model developers can routinely upload their predictions to an anonymous ftp. Forecast data will be parsed and stored in a database which accessible to anyone via an API
- SEP forecasts can be roughly divided into three categories:



- The SEP scoreboard will focus on real-time forecasts (first and second categories) and will collect: proton flux profile, threshold crossing probability, onset time, and duration.
- The SEP scoreboard team will also coordinate with the SEP Working Team for historical comparisons, particularly for those physics-based models in the third category that are not ready or relevant for real-time modeling.
- Next steps for the SEP Working Team: SHINE session on model/data comparisons for 1-2 campaign events.

SEP Scoreboard Planning Display ideas

Probability heat map at a single time

Predicted proton flux time-series

https://ccmc.gsfc.nasa.gov/challenges/sep.php

ME: 2017-09-06T12:24:00-CME-001

CME Arrival Time Scoreboard Community predictions for the 6 Sep 2017 CME

WE: 2017-09-00112:24:00-CME-001						
Actual Shock Arrival Time: 2017-09-0	J7T22:30Z					
Observed Geomagnetic Storm Parame	sters:					
Max Kp: 8.0						
Dst min. in nT: -142						
Dst min. time: 2017-09-08T02:00Z						
CME Note: Associated with X9.3 flare	e from AR 12673.	•				
Predicted Shock Arrival Time	Difference (hrs)	Confidence (%)	Submitted On	Lead Time (hrs)	2 Predicted Geomagnetic Storm Parameter(s)	Method
2017-09-08T06:00Z (-3.0h, +3.0h)	7.50	80.0	2017-09-07T05:00Z	17.50	Max Kp Range: 5.0 - 8.0	WSA-ENLIL + Cone (Met Office)
2017-09-08T06:00Z (-2.0h, +2.0h)	7.50		2017-09-07T16:30Z	6.00	/	Ooty IPS
2017-09-08T07:32Z (-5.0h, +6.0h)	9.03		2017-09-07T08:33Z	2 13.95	/	DBM
2017-09-08T08:00Z (-3.0h, +3.0h)	9.50	70.0	2017-09-07T05:40Z	2 16.83	/	DBM + ESWF
2017-09-08T10:16Z (-4.0h, +4.0h)	11.77		2017-09-07T09:00Z	2 13.50	/	EAM (Effective Acceleration Model)
2017-09-08T10:25Z	11.92		2017-09-07T02:13Z		, k	SARM
2017-09-08T10:42Z	12.20		2017-09-07T15:55Z	6.58	, k	<u>SPM</u>
2017-09-08T12:46Z	14.27	84.0	, <mark></mark> '	<u>/</u> '	Max Kp Range: 4.33333 - 6.5	Average of all Methods
2017-09-08T13:00Z (-7.0h, +7.0h)	14.50	90.0	2017-09-07T08:25Z	14.08	Max Kp Range: 5.0 - 7.0	Other
2017-09-08T13:52Z	15.37		2017-09-07T15:46Z			<u>SPM2</u>
2017-09-08T15:48Z (-9.0h, +10.0h)	17.30	100.0	2017-09-07T14:53Z	7.62	2 Max Kp Range: 4.0 - 6.0	Ensemble WSA-ENLIL + Cone (GSFC SWRC)
2017-09-08T16:00Z	17.50	}	2017-09-09T12:59Z	-38.48	/	WSA-ENLIL + Cone (BoM)
2017-09-08T16:30Z (+14.0h)	18.00	}	2017-09-07T12:32Z	9.97	·	ElEvo
2017-09-08T17:00Z (-12.0h, +12.0h)	18.50	80.0	2017-09-06T22:40Z	23.83	3 Max Kp Range: 4.0 - 6.0	Other (SIDC)
2017-09-08T18:27Z (-7.0h, +7.0h)	19.95		2017-09-06T17:23Z		2 Max Kp Range: 3.0 - 5.0	WSA-ENLIL + Cone (GSFC SWRC)
2017-09-08T22:00Z	23.50	/	2017-09-06T23:24Z	23.10) Max Kp Range: 5.0 - 7.0	WSA-ENLIL + Cone (NOAA/SWPC)

https://kauai.ccmc.gsfc.nasa.gov/CMEscoreboard

All prediction methods are welcome and all are encouraged to participate.

Future:Linking the Scoreboards

Example of activities linked to a CME event in the CCMC DONKI database:

http://kauai.ccmc.gsfc.nasa.gov/DONKI

Coronal Mass Ejection Catalog: SWRC_CATALOG Start Time: 2015-03-15T02:00Z (SOHO: LASCO/C2) All Detecting Spacecrafts: SOHO: LASCO/C2 SOHO: LASCO/C3 Activity ID: 2015-03-15T02:00:00-CME-001 (version 4) Source Location: S15W24 Active Region Number: 12297 Note: This CME is connected to the long duration C9.1 flare erupting, bright post-flare arcade later in AR 2297 Submitted on 2015-03-15T14:17Z by Karin Muglach

2015-03-15T01:15:00-FLR-001 FLR Type: C9.1

<u>2015-03-16T07:36:00-SEP-001</u> SOHO: COSTEP 15.8-39.8 MeV

2015-03-17T04:05:00-IPS-001

Location: Earth

2015-03-17T06:00:00-GST-001

NOAA Kp: 6 (2015-03-17T09:00Z) NOAA Kp: 6 (2015-03-17T12:00Z) NOAA Kp: 8 (2015-03-17T15:00Z) NOAA Kp: 8 (2015-03-17T18:00Z) NOAA Kp: 7 (2015-03-17T21:00Z) NOAA Kp: 8 (2015-03-18T00:00Z) NOAA Kp: 6 (2015-03-18T03:00Z) NOAA Kp: 6 (2015-03-18T18:00Z)

2015-03-17T06:23:00-MPC-001