

FLARECAST

SCIENTIFIC RESULTS

D. Shaun Bloomfield UNN – Newcastle upon Tyne, United Kingdom

29 November 2017

2nd Stakeholder Workshop ESWW14, Ostende, Belgium

<u>Full Title</u> :	Flare Likelihood and Region	
	Eruption Forecasting	
Acronym:	FLARECAST	
Project No.:	640216	

FLARECAST Work Package Structure

Active Region Properties (WP2)

Properties calculated from B_{los} v B_r (Guerra *et al.*, under review)

- Comparison between extracted properties from same algorithms
 - morphologic properties least effected (e.g., PIL length – panel a)
 - spatial pattern properties constrained (e.g., spectral power index – panel d)
 - flux-related properties shifted upward (e.g., B_{eff} – panel e)

Active Region Properties (WP2)

Properties calculated from B_{los} v B_r (Guerra et al., under review)

- Comparison between extracted properties from same algorithms
 - property differences largest towards the limb
 - \circ indications of E-W asymmetry
 - o SDO/HMI noise

Active Region Proper

Flows near polarity inver

- Characterising flows in opposite polarity regions
 - decompose into parallel and perpendicular flows w.r.t. PIL
 - velocity shear is difference between flows either side of PIL
 - convergent/divergent flows also accessible

al., under review)

Active Region Properties (WP2)

Flows near polarity inversion lines (Park et al., under review)

- o Flare productivity scales with total velocity shear along PIL
 - o no clear dependence on average or maximum shear
- Time to next major flare (\ge M1.0) shorter with greater total shear along PIL

 $\circ \quad$ broad distribution spread, but inter-quartile ranges drop

Prediction Algorithm Comparison (WP3/5)

Forecasting from all B_{los} properties

- Event definition:
 - $\circ \ge M1.0$ flares within 24 hours
- Trained on 14-Sep-2012 to 31-Dec-2014
- Tested on 1-Jan-2015 to 31-Mar-2016
- Only showing verification for flare yes/no classifying algorithms

Prediction Algorithm	Probability of Detection POD	Probability of False Detection POFD	True Skill Statistic TSS
Hybrid Lasso	0.94	0.20	0.74
Hybrid Logit	0.90	0.20	0.70
Random Forest	0.71	0.07	0.65
Probabilistic K-means	0.65	0.40	0.25
Support Vector Classifier	0.14	0.02	0.12
K-means	0.02	0.01	0.01
Sim. Ann. K-means	0.00	0.32	-0.32
Fuzzy K-means	0.08	0.66	-0.57

Met Office Forecast Comparison (WP5)

Operational benchmark (Murray et al., 2017, Space Weather, 15, 577)

 Human intervention adds skill beyond basic starting model (e.g., Poisson rates -> probabilities)

Exploratory Active Region Properties (WP6)

Non-neutralized currents (Kontogiannis et al., 2017, SolPhys, 212, 159)

- Correspond to "excess" beyond
 - checks to guarantee suitability of input data
 - currently data are filtered at AR property extraction algorithm stage
 - improved tracking of unprocessed data to be implemented in Year 3

Exploratory Active Region Properties (WP6)

Non-neutralized currents (Kontogiannis et al., 2017, SolPhys, 212, 159)

- Bayesian probabilities determined from thresholding
 - checks to guarantee suitability of input data

Exploratory Eruption Precursors (WP6)

Label B_d

Arcade Strength

Eruption

Erupt SD

-10

Strong

Yes

Erupt MD

-7.5

Medium

Yes

Parametric simulations (Pariat et al., 2017, A&A, 601, A125)

No Erupt MD

7.5

Medium

No

No Erupt SD

10

Strong

No

- Orientation and strength of overlying field varied
- Observational properties extracted from simulation surface
- What behaviours do erupting cases share?

No Erupt WD

5

Weak

No

No Erupt ND

0

Null

No

Erupt WD

-5

Weak

Yes

Upcoming Results

Ongoing analysis

- Active region properties
 - o non-neutralized currents
 - o null points
- Forecast performance
 - $\circ~$ full comparison between using properties from $B_{los}\,v~B_r$ data
 - o inclusion of flare history parameters (persistence)
 - o exploration of forecast window latency and duration
 - o ensemble forecasting techniques
- Towards CME forecasting
 - o active region properties linked to CME production (HELCATS collaboration)

